Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a robust, transferable and predictive in vitro exposure system for the screening and monitoring of airborne particles concerning their acute pulmonary cytotoxicity by exposing cultivated human lung cells at the air-liquid interface (ALI).

Abstract

Here, we present a specially designed modular in vitro exposure system that enables the homogenous exposure of cultivated human lung cells at the ALI to gases, particles or complex atmospheres (e.g., cigarette smoke), thus providing realistic physiological exposure of the apical surface of the human alveolar region to air. In contrast to sequential exposure models with linear aerosol guidance, the modular design of the radial flow system meets all requirements for the continuous generation and transport of the test atmosphere to the cells, a homogenous distribution and deposition of the particles and the continuous removal of the atmosphere. This exposure method is primarily designed for the exposure of cells to airborne particles, but can be adapted to the exposure of liquid aerosols and highly toxic and aggressive gases depending on the aerosol generation method and the material of the exposure modules.

Within the framework of a recently completed validation study, this exposure system was proven as a transferable, reproducible and predictive screening method for the qualitative assessment of the acute pulmonary cytotoxicity of airborne particles, thereby potentially reducing or replacing animal experiments that would normally provide this toxicological assessment.

Introduction

Inhalation of toxic airborne particles is a public health concern, leading to a multitude of health risks worldwide and many millions of deaths annually1,2. Climate change, the ongoing industrial development and the rising demand for energy, agricultural and consumer products have contributed to the increase of pulmonary diseases over the last years3,4,5,6. Knowledge and evaluation of inhalable substances regarding their acute inhalation toxicity provide the basis for hazard assessme....

Protocol

NOTE: The protocol of one exposure experiment covers a period of three days.

Day 1

1. General preparations and cultivation of cells

NOTE: The human lung adenocarcinoma epithelial cell line A549 was used for exposure experiments. Cells must be handled under sterile conditions. Other cell lines that are suitable for cultivation at the ALI can be used.

  1. Prepare the growth medium (Dulbecco's Minimum Essential Medium (DMEM), sup.......

Representative Results

The CULTEX RFS is a specially designed modular in vitro exposure system that enables the direct and homogenous exposure of cells at the ALI. Within a former pre-validation study, the general applicability of this exposure system and its transferability, stability and reproducibility were successfully demonstrated. In a recent research project funded by the German Federal Ministry of Education and Research, the exposure system was successfully validated and established as a prediction mode.......

Discussion

Many non-animal inhalation toxicity testing models have been developed in recent years in order to gain information about the acute inhalation hazard of inhalable particles and to reduce and replace animal experiments according to the 3R principle25.

In terms of cell culture models, exposure of cells can be done under submerged conditions or at the ALI. Exposing cells under submerged conditions may affect the physico-chemical properties and thus, the toxic properties of.......

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF, Germany (Grant 031A581, sub-project A-D)) and by the German Research Foundation (Deutsche Forschungsgesellschaft, DFG, Research Training Group GRK 2338).

....

Materials

NameCompanyCatalog NumberComments
Cells
A549ATCCCCL-185
Cell culture medium and supplies
DMEMBiochrom, Berlin, GermanyFG 0415used as growth medium
DMEMGibco-Invitrogen, Darmstadt, Germany22320used as exposure medium
FBS superiorBiochrom, Berlin, GermanyS 0615
Gentamycin (10mg/mL)Biochrom, Berlin, GermanyA 2710
HEPES 1MTh. Geyer, Renningen, GermanyL 0180
PBSBiochrom, Berlin, GermanyL 1825
Trypsin/EDTA (0.05%/0.02%)Biochrom, Berlin, GermanyL 2143
Cell culture material
CASY CupsRoche Diagnostic GmbH, Mannheim, GermanyREF 05651794
Cell culture platesCorning, Wiesbaden, Germany35166­-well plates
Corning Transwell cell culture insertsCorning, Wiesbaden, Germany345024mm inserts; 6-­well plates; 0.4 µm
Chemicals
CASYtonRoche Diagnostic GmbH, Mannheim, GermanyREF 05651808001
Compressed Air (DIN EN 12021)Linde Gas Therapeutics GmbH, Oberschleißheim, Germany2290152
WST-1Abcam, Cambridge, United Kingdomab155902
Instruments + equipment
CASY Cell CounterSchärfe System GmbH, Reutlingen, Germany
Circulation thermostatLAUDA, Lauda-Königshofen, GermanyEcoline RE 100
CULTEX HyP - Hydraulic PressCultex® Technology GmbH, Hannover, Gemany
CULTEX insert sleeveCultex® Technology GmbH, Hannover, Gemany
CULTEX RFS - Radial Flow System Type 2 (module for particle exposure)Cultex® Technology GmbH, Hannover, Gemany
CULTEX RFS - Radial Flow System Type 2 (module for clean air exposure)Cultex® Technology GmbH, Hannover, Gemany
CULTEX supply
Flow controller 0-30 ml/min (IQ-Flow)Bronkhorst Deutschland Nord GmbH
Flow controller 0-1,5 l/min (EL-Flow)Bronkhorst Deutschland Nord GmbH
Filters (large)Munktell & Filtrak GmbH, Sachsen, GermanyLP-050Munktell Sterile Filter; Particle retention efficiency > 99,999%
Filters (small)Parker Hannifin Corporation, Mainz, Germany9933-05-DQBalston disposable filter
Medium pumpCole-Parmer GmbH, Wertheim, GermanyIsmatec IPC High Precision Multichannel Dispenserdigital peristaltic pump
Microplate Reader Infinite M200 ProTecan Deutschland GmbH, Crailsheim, Germany
Vakuum pumpKNF, Freiburg, GermanyN86 KT.18
Vögtlin mass flow controller 0,2-10 l/minTrigasFI GmbHVögtlin red-y compact regulator, Typ-Nr.: GCR-C3SA-BA20
Water BathLAUDA, Lauda-Königshofen, GermanyEcoline Staredition RE 104

References

  1. Faber, S. C., McCullough, S. D. Through the Looking Glass: In vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. Applied In vitro Toxicology. 4 (2), 115-128 (2018).
  2. De Matteis, S., et al.

Explore More Articles

Acute Inhalation ToxicityAirborne ParticlesCultivated Human Lung CellsAir liquid InterfaceIn Vitro Exposure SystemRadial Aerosol DistributionA549 CellsCell Culture InsertsCompressed Air PressureParticulate Exposures

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved