A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol provides a simple and reliable method for the production of viable precision-cut liver slices from mice. The ex vivo tissue samples can be maintained under laboratory tissue culture conditions for multiple days, providing a flexible model to examine liver pathobiology.
Understanding the mechanisms of liver injury, hepatic fibrosis, and cirrhosis that underlie chronic liver diseases (i.e., viral hepatitis, non-alcoholic fatty liver disease, metabolic liver disease, and liver cancer) requires experimental manipulation of animal models and in vitro cell cultures. Both techniques have limitations, such as the requirement of large numbers of animals for in vivo manipulation. However, in vitro cell cultures do not reproduce the structure and function of the multicellular hepatic environment. The use of precision-cut liver slices is a technique in which uniform slices of viable mouse liver are maintained in laboratory tissue culture for experimental manipulation. This technique occupies an experimental niche that exists between animal studies and in vitro cell culture methods. The presented protocol describes a straightforward and reliable method to isolate and culture precision-cut liver slices from mice. As an application of this technique, ex vivo liver slices are treated with bile acids to simulate cholestatic liver injury and ultimately assess the mechanisms of hepatic fibrogenesis.
The pathogenesis of most chronic liver diseases (i.e., viral hepatitis, nonalcoholic steatohepatitis, cholestatic liver injury and liver cancer) involves complex interactions between multiple different liver cell types that drive inflammation, fibrogenesis, and cancer development1,2. To understand the molecular mechanisms underlying these chronic liver-based diseases, the interactions between multiple liver cell types must be investigated. While multiple hepatic cell lines (and more recently, organoids) can be cultured in vitro, these models do not accurately emulate the complex structure, function, and cellular diversity of the hepatic microenvironment3. Furthermore, cultured liver cells (in particular, transformed cell lines) may deviate from their original source biology. Animal models are used experimentally to investigate the interactions between multiple liver cell types. However, they may become significantly reduced in scope for experimental manipulation, due to significant off-target effects in extrahepatic organs (e.g., when testing potential therapeutics).
The use of precision-cut liver slices (PCLS) in tissue culture is an experimental technique first used in drug metabolism and toxicity studies, and it involves the cutting of viable, ultrathin (around 100−250 µm thick) liver slices. This permits the direct experimental manipulation of liver tissue ex vivo4. The technique bridges an experimental gap between in vivo animal studies and in vitro cell culture methods, overcoming many drawbacks of both methods (i.e., practical limits on the range of experiments that can be performed in whole animals as well as loss of structure/function and cellular diversity with in vitro cell culture methods).
Furthermore, PCLS vastly increases experimental capacity compared to whole animal studies. As one mouse can produce more than 48 liver slices, this also facilitates the use of both control and treatment groups from the same liver. In addition, the technique physically separates the liver tissue from other organ systems; therefore, it removes potential off-target effects that can occur in whole animals when testing the effects of exogenous stimuli.
In this protocol, PCLS are generated using a vibratome with a laterally vibrating blade. Other studies have successfully used a Krumdieck tissue slicer, as described in Olinga and Schuppan5. In the vibratome, lateral vibration of the blade prevents tearing of the ultrathin tissue caused by shear stress, as the blade is pushed into the tissue. Both the vibratome and Krumdieck tissue slicer work effectively without structural embedding of liver tissue, which streamlines the slicing procedure. This technique can also be used to create PCLS from diseased livers, including those from mouse models of fibrosis/cirrhosis6 and hepatic steatosis7.
In addition to demonstrating the techniques required for preparation and tissue culture of PCLS, this report also examines the viability of these ex vivo tissues by measuring adenosine triphosphate (ATP) levels and examining tissue histology to assess necrosis and fibrosis. As a representative experimental procedure, PCLS are treated with pathophysiological concentrations of three different bile acids (glycocholic, taurocholic, and cholic acids) to simulate cholestatic liver injury. In the context of cholestatic liver injury, taurocholic acid in particular has been shown to be significantly increased in both the serum and bile of children with cystic fibrosis-associated liver disease8.
Liver progenitor cells have also been treated in vitro with taurocholic acid to simulate the elevated taurocholic acid levels observed in patients, and this treatment caused increased proliferation and differentiation of liver progenitor cells towards a biliary (cholangiocyte) phenotype9. Subsequently, PCLS were treated ex vivo with elevated levels of taurocholic acid, and increased cholangiocyte markers were observed. This supports the in vitro observation that taurocholic acid drives biliary proliferation and/or differentiation in the context of pediatric cystic fibrosis-associated liver disease9.
All animal experiments were performed in accordance with the Australian code for the care and use of animals for scientific purposes at QIMR Berghofer Medical Research Institute with approval from the institute animal ethics committee. Male C57BL/6 mice (15−20 weeks old) were obtained from the Animal Resources Centre, WA, Australia.
NOTE: All solutions, media, instruments, hardware, and tubes that contact the samples must be sterilized or thoroughly disinfected with a 70% ethanol solution and handled using sterile techniques to minimize the risk of culture contamination.
1. Setup of the vibratome
2. Liver removal and preparation
3. Production of liver slices
4. Tissue culture
NOTE: All tissue culture work must be performed in a sterile laminar flow hood.
5. Example application of PCLS
To determine the cell viability of PCLS over time, tissue ATP levels were measured. ATP levels are typically proportional to viability. PCLS (around 15 mm2 in area) were cultured in normal William's E medium with 10% FBS, then at specific timepoints, liver slices were removed from tissue culture and homogenized with both ATP and protein (for normalization) concentrations (Table of Materials) being measured (
The protocol demonstrates the application of murine PCLS isolation and tissue culture, and the procedures are designed to assess both viability and utility as well as examine impacts of exogenous mediators of liver pathobiology using biochemical assays, histology, and qPCR. The experimental utility of PCLS tissue culture in rodents and humans has been demonstrated in a wide range of applications, including experimental investigations in microRNA15/RNA9/protein expression
The authors have nothing to disclose.
This work was supported by research grants from the National Health and Medical Research Council (NHMRC) of Australia (Grant No. APP1048740 and APP1142394 to G.A.R.; APP1160323 to J.E.E.T., J.K.O., G.A.R.). Grant A. Ramm is supported by a Senior Research Fellowship from the NHMRC of Australia (Grant No. APP1061332). Manuel Fernandez-Rojo was supported by the TALENTO program of Madrid, Spain (T1-BIO-1854).
Name | Company | Catalog Number | Comments |
10 cm Petri Dish | GREINER | 664160 | Sterile Dish |
12 Well Tissue Culture Plate Flat Bottom | Greiner Bio-one | 665180 | |
70% Ethanol Solution (made with AR Grade) | Chem-Supply Pty Ltd | EA043-20L-P | Disinfection solution |
Acetone | Chem-Supply Pty Ltd | AA008-2.5L | |
Cholic acid | Sigma-Aldrich | C1129-100G | |
Cyanoacrylate Super Glue | Parfix, DuluxGroup (Australia) | Other brands should work | |
Disposable Single Edge Safety Razor Blades | Mixed | ||
Dissection Board | Made in-house | Sterile material over polystyrene | |
Fetal Bovine Serum | GE Healthcare Australia Pty Ltd | SH30084.02 | |
Forceps sharp point 130 mm long | ThermoFisher Scientific | MET2115-130 | |
Forma Steri-Cycle CO2 Incubator | ThermoFisher Scientific | 371 | |
Glutamine | Life Technologies Australia Pty Ltd | 25030081 | |
Glycocholic acid hydrate | Sigma-Aldrich | G2878-100G | |
ISOLATE II RNA Mini Kit | Bioline (Aust) Pty Ltd | BIO-52073 | |
Ketamine 50 ml | Provet | KETAI1 | |
Krebs-Henseleit Buffer with Added Glucose 2000 mg/L | Sigma-Aldrich | K3753 | Can also be made in house |
Laminar Flow Hood | Hepa air filtration | ||
NanoDrop 2000/2000c Spectrophotometers | ThermoFisher Scientific | ||
Penicillin-Streptomycin, Liq 100 ml | Life Technologies Australia Pty Ltd | 15140-122 | |
Picro Sirius Red | ABCAM Australia Pty Ltd | ab246832 | |
Pipette Tips Abt 1000 µl Filter Interpath | Interpath | 24800 | |
Pipette Tips Abt 10 µl Filter Interpath | Interpath | 24300 | |
Pipette Tips Abt 200 µl Filter Interpath | Interpath | 24700 | |
Pipette Tips Abt 20 µl Filter Interpath | Interpath | 24500 | |
Precellys Homogeniser | Bertin Instruments | P000669-PR240-A | |
Protractor | Generic | To measure blade angle | |
Quantstudio 5 QPCR Fixed 384 Block | Applied Biosystems/ ThermoFisher Scientific | ||
Scalpel Blade | Mixed | ||
Scalpel Blade Holder | Mixed | ||
SensiFAST cDNA Synthesis Kit | Bioline (Aust) PTY LTD | ||
Small Paintbrush with Plastic Handle | Mixed | Plastic handle resists ethanol | |
Square-Head Foreceps | Mixed | ||
Sterile 50 ml Plastic Tubes | Corning Falcon | 352098 | |
Surgical Clamps | Mixed | ||
Surgical Forceps | Mixed | ||
Surgical Pins | Mixed | ||
Surgical Scissors | Mixed | ||
Taurochoic acid | Sigma-Aldrich | T-4009-5G | |
Vibratome SYS-NVSLM1 Motorized Vibroslice | World Precision Instruments | SYS-NVSLM1 | With thermoelectric cooling |
Williams Medium E | Life Technologies Australia Pty Ltd | 12551032 | 2.0 g/l glucose |
Xylazine 100 mg/mL 50 mL | Provet | XYLAZ4 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved