Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Iron oxide nanoparticles are synthesized via a nonaqueous sol gel procedure and coated with anionic short molecules or polymer. The use of magnetometry for monitoring the incorporation and biotransformations of magnetic nanoparticles inside human stem cells is demonstrated using a vibrating sample magnetometer (VSM).

Abstract

Magnetic nanoparticles, made of iron oxide, present a peculiar interest for a wide range of biomedical applications for which they are often internalized in cells and then left within. One challenge is to assess their fate in the intracellular environment with reliable and precise methodologies. Herein, we introduce the use of the vibrating sample magnetometer (VSM) to precisely quantify the integrity of magnetic nanoparticles within cells by measuring their magnetic moment. Stem cells are first labeled with two types of magnetic nanoparticles; the nanoparticles have the same core produced via a fast and efficient microwave-based nonaqueous sol gel synthesis and differ in their coating: the commonly used citric acid molecule is compared to polyacrylic acid. The formation of 3D cell-spheroids is then achieved via centrifugation and the magnetic moment of these spheroids is measured at different times with the VSM. The obtained moment is a direct fingerprint of the nanoparticles’ integrity, with decreasing values indicative of a nanoparticle degradation. For both nanoparticles, the magnetic moment decreases over culture time revealing their biodegradation. A protective effect of the polyacrylic acid coating is also shown, when compared to citric acid.

Introduction

There is increased interest in the magnetic features of iron oxide nanoparticles for a wide range of biomedical applications. Their response to magnetic resonance makes them reliable contrast agents for magnetic resonance imaging (MRI), an advantage in regenerative medicine where cells labeled with magnetic nanoparticles can be tracked in vivo following implantation1. Using magnetic fields, cells can also be guided at a distance; this way, cellular spheroids2,3, rings4, or sheets5 can be engineered magnetically and also remotely stimulated....

Protocol

1. Synthesis of magnetic nanoparticles

  1. Core synthesis – microwave-assisted
    1. Dissolve 400 mg of iron(III) acetylacetonate (>99.9%) in 10 mL of benzyl alcohol (BA, 99.8%) within a 30 mL monowave glass vial.
    2. Increase the temperature of the suspension from 25 to 250 °C in 20 min (at a rate of 11.25 °C/min) and maintain it at 250 °C for 30 min using a microwave reactor.
    3. Transfer the resulting nanoparticles suspended in benzyl alcohol to a glass vial and sep.......

Representative Results

Using the microwave-assisted synthesis, magnetic nanoparticles with a monodisperse 8.8 ± 2.5 nm core size are produced and coated with either citrate or PAA (Figure 1A). Stem cells are then incubated with these nanoparticles dispersed in culture medium at a given concentration for 30 minutes, resulting in their endocytosis and confinement within the cellular endosomes (Figure 1B). The magnetic stem cells are then suspended in medium, centrifuged, and the ce.......

Discussion

Using a fast and efficient microwave-based synthesis, magnetic nanoparticles can easily be synthesized, with controlled size, and further coated with given molecules. A critical step is to stock the iron salt and the benzyl alcohol under vacuum to keep a small dispersion in size. The benzyl alcohol acts as both as solvent and ligand at the same time allowing to directly obtain calibrated bare iron oxide without the need of additional ligands. After nanoparticles transfer in water the bare magnetic nanoparticles can be ea.......

Acknowledgements

This work was supported by the European Union (ERC-2014-CoG project MaTissE #648779). The authors would like to acknowledge the CNanoMat physico-chemical characterizations platform of University Paris 13.

....

Materials

NameCompanyCatalog NumberComments
0.05% Trypsin-EDTA (1x)Life Technologies25300-054
Benzyl alcohol for synthesisSigma Aldrich8.22259
DexamethasoneSigmaD4902Prepare a 1 mM stock solution diluted in Ethanol 100% and store at -20°C
Dichloromethane ≥99% stabilised, GPR RECTAPURVWR Chemicals23367
DMEM with Glutamax ILife Technologies31966-021No sodium pyruvate, no HEPES
Ethanol absoluteVWR20821.310
Fetal Bovine SerumLife Technologies10270-106
Formalin solution 10% neutral bufferedSigmaHT5012
Hydrochloric acid, 1.0N Standardized SolutionAlfa Aesar35640
Iron(III) acetylacetonate (> 99.9%)Sigma Aldrich517003
ITS Premix Universal Culture Supplement (20x)Corning354352
L-Ascorbic Acid 2-phosphateSigmaA8960Prepare a fresh concentrated solution (25 mM) diluted in distilled water
L-ProlineSigmaP5607Prepare a 175 mM stock solution diluted in distilled water and store at 4°C
Mesenchymal Stem Cell (MSC)LonzaPT-2501
Monowave glass vialAnton Paar82723_us
Microwave reactorAnton PaarMonowave 300
MSCGM BulletKit mediumLonzaPT-3001For the complete medium, add the provided BulletKit (containing serum, glutamine and antibiotics) to the MSCGM medium
PBS w/o CaCl2 w/o MgCl2Life Technologies14190-094
Penicillin (10.000U/mL)/Streptomicin (10.000µg/mL)Life Technologies15140-122
Poly(acrylic acid, sodium salt)Sigma Aldrich416010MW = 1200 g/mol
RPMI medium 1640, no GlutamineLife Technologies31870-025No sodium pyruvate, no HEPES
Sodium hydroxide, 1.0N Standardized SolutionAlfa Aesar35629
Sodium pyruvate solution 100mMSigmaS8636
Sterile conical centrifuge tubeFalcon35209715 mL tubes
Trypsin-EDTA (0.05%), phenol redThermo Fisher Scientific25300054
Tri-sodium citrateVWR33615.268Prepare a 1 M stock solution diluted in distilled water and store at 4°C
Tri-Sodium Citrate Dihydrate, Certified AR for AnalysisSigma Aldrich10396430
Ultra centrifugal filterAmiconAC S510024

References

  1. Azevedo-Pereira, R. L., et al. Superparamagnetic iron oxide nanoparticles as a tool to track mouse neural stem cells in vivo. Molecular Biology Reports. 46 (1), 191-198 (2019).
  2. Fayol, D., Frasca, G., Le Visage, C., Gazeau, F., Luciani, N., Wilhelm, C.

Explore More Articles

Magnetic NanoparticlesMagnetometryCellular IncorporationBiodegradationIron Oxide NanoparticlesSynthesisBiomedical ApplicationsMagnetismContaminationMagnetometerLiquid SamplesBiological SamplesIron III AcetylacetonateMicrowave ReactorNeodymium MagnetHydrochloric AcidCoating MoleculesHuman Mesenchymal Stem CellsRPMI Medium

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved