Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

To study chaperone-chaperone and chaperone-substrate interactions, we perform synthetic interaction screens in Caenorhabditis elegans using RNA interference in combination with mild mutations or over-expression of chaperones and monitor tissue-specific protein dysfunction at the organismal level.

Abstract

Correct folding and assembly of proteins and protein complexes are essential for cellular function. Cells employ quality control pathways that correct, sequester or eliminate damaged proteins to maintain a healthy proteome, thus ensuring cellular proteostasis and preventing further protein damage. Because of redundant functions within the proteostasis network, screening for detectable phenotypes using knockdown or mutations in chaperone-encoding genes in the multicellular organism Caenorhabditis elegans results in the detection of minor or no phenotypes in most cases. We have developed a targeted screening strategy to identify chaperones required for a specific function and thus bridge the gap between phenotype and function. Specifically, we monitor novel chaperone interactions using RNAi synthetic interaction screens, knocking-down chaperone expression, one chaperone at a time, in animals carrying a mutation in a chaperone-encoding gene or over-expressing a chaperone of interest. By disrupting two chaperones that individually present no gross phenotype, we can identify chaperones that aggravate or expose a specific phenotype when both perturbed. We demonstrate that this approach can identify specific sets of chaperones that function together to modulate the folding of a protein or protein complexes associated with a given phenotype.

Introduction

Cells cope with protein damage by employing quality control machineries that repair, sequester or remove any damaged proteins1,2. Folding and assembly of protein complexes are supported by molecular chaperones, a diverse group of highly conserved proteins that can repair or sequester damaged proteins3,4,5,6,7. The removal of damaged proteins is mediated by the ubiquitin-proteasome system (UPS)8 or by the autophagy machinery

Protocol

1. Preparation of nematode growth media plates for RNAi

  1. To a 1 L bottle, add 3 g of NaCl, 2.5 g of Bacto-Peptone, 17 g of agar and distilled water up to 1 L and autoclave.
  2. Cool bottle to 55 °C.
  3. Add 25 mL of 1 M KH2PO4, pH 6.0, 1 mL of 1 M CaCl2, 1 mL of 1 M MgSO4, and 1 mL of cholesterol solution (Table 1) to make nematode growth media (NGM).
  4. Add 1 mL of ampicillin (100 mg/mL) and 0.5 mL of 1 M IPTG (Table .......

Representative Results

Using temperature-sensitive mutations in UNC-45 to screen for aggravating or alleviating interactions under permissive or restrictive conditions, respectively
Muscle assembly and maintenance offer an effective system to study tissue-specific chaperone interactions. The functional unit of contractile muscles, the sarcomere, presents a crystalline-like arrangement of structural and regulatory proteins. The stability of the motor protein myosin and its incorporation into the thick filaments of contrac.......

Discussion

An integrated picture of the proteostasis network reflecting how it is organized and functions in different metazoan cells and tissues remains lacking. To address this shortcoming, specific information on the interactions of various components of this network, such as molecular chaperones, in specific tissues during the course of development and aging is required. Here, we showed how the use of tissue-specific perturbations enabled us to examine the chaperone network in a given tissue. To explore tissue-specific chaperon.......

Acknowledgements

We thank the Caenorhabditis Genetics Center, funded by the NIH National Center for Research Resources (NCRR), for some of the nematode strains. Monoclonal antibodies developed by H.F. Epstein were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the Department of Biology, University of Iowa. This research was supported by a grant from the Israel Science Foundation (grant No. 278/18) and by a grant from the Israel Ministry of Science & Technology, and the Ministry of Foreign Affairs and International Cooperation, General Directorate for Country Promotion, Italian Republic (grant No. 3-14337). We than....

Materials

NameCompanyCatalog NumberComments
12-well-platesSPLBA3D16B
40 mm platesGreiner Bio-one627160
60 mm platesGreiner Bio-one628102
6-well platesThermo Scientific140675
96 well 2 mL 128.0/85mmGreiner Bio-one780278
AgarFormediumAGA03
AmpicillinFormedium69-52-3
bromophenol blueSigmaBO126-25G
CaCl2Merck1.02382.0500
CameraQimagingq30548
CholesterolAmresco0433-250G
ConfocalLeicaDM5500
Filter (0.22 µm)SigmaSCGPUO2RE
Fluorescent stereomicroscopeLeicaMZ165FC
GlycerolFrutarom2355519000024
IPTGFormedium367-93-1
KClMerck104936
KH2PO4Merck1.04873.1000
KOHBio-Lab001649029100
MgSO4Fisher22189-08-8Gift from the Morimoto laboratory
Myosin MHC A (MYO-3) antibodyHybridoma Bank5-6
Na2HPO4·7H2OSigmas-0751
NaClBio-Lab001903029100
PeptoneMerck61930705001730
Plate pouring pumpIntegradoes it p920
RNAi Chaperone libraryNANA
SDSVWR Life Science0837-500
ß-mercaptoethanolBio world41300000-1
stereomicroscopeLeicaMZ6
TetracyclineDuchefa Biochemie64-75-5
TrisBio-Lab002009239100
Tween-20FisherBP337-500

References

  1. Gomez-Pastor, R., Burchfiel, E. T., Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nature Reviews Molecular Cell Biology. 19 (1), 4-19 (2018).
  2. Dubnikov, T., Ben-Gedalya, T., Cohen, E.

Explore More Articles

Caenorhabditis ElegansTissue specific Chaperone InteractionsEmbryo SynchronizationM9 BufferNGM PlateCell ScraperCentrifugationSynchronized NematodesRNAiEmbryonic Lethality

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved