A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Bone metastasis models do not develop metastasis uniformly or with a 100% incidence. Direct intra-osseous tumor cell injection can result in embolization of the lung. We present our technique modeling primary bone tumors and bone metastasis using solid tumor graft implantation into bone, leading to reproducible engraftment and growth.
Primary bone tumors or bone metastasis from solid tumors result in painful osteolytic, osteoblastic, or mixed osteolytic/osteoblastic lesions. These lesions compromise bone structure, increase the risk of pathologic fracture, and leave patients with limited treatment options. Primary bone tumors metastasize to distant organs, with some types capable of spreading to other skeletal sites. However, recent evidence suggests that with many solid tumors, cancer cells that have spread to bone may be the primary source of cells that ultimately metastasize to other organ systems. Most syngeneic or xenograft mouse models of primary bone tumors involve intra-osseous (orthotopic) injection of tumor cell suspensions. Some animal models of skeletal metastasis from solid tumors also depend on direct bone injection, while others attempt to recapitulate additional steps of the bone metastatic cascade by injecting cells intravascularly or into the organ of the primary tumor. However, none of these models develop bone metastasis reliably or with an incidence of 100%. In addition, direct intra-osseous injection of tumor cells has been shown to be associated with potential tumor embolization of the lung. These embolic tumor cells engraft but do not recapitulate the metastatic cascade. We reported a mouse model of osteosarcoma in which fresh or cryopreserved tumor fragments (consisting of tumor cells plus stroma) are implanted directly into the proximal tibia using a minimally invasive surgical technique. These animals developed reproducible engraftment, growth, and, over time, osteolysis and lung metastasis. This technique has the versatility to be used to model solid tumor bone metastasis and can readily employ grafts consisting of one or multiple cell types, genetically-modified cells, patient-derived xenografts, and/or labeled cells that can be tracked by optical or advanced imaging. Here, we demonstrate this technique, modeling primary bone tumors and bone metastasis using solid tumor graft implantation into bone.
Mouse models of human and animal disease are becoming increasingly popular in biomedical research. The utility of using mice in this context is that their anatomy and physiology are very similar to humans. They have a relatively short gestation period and time in post-natal life to achieve maturity, and are largely associated with a relatively low cost and ease of housing, albeit increasing costs of development or purchase are associated with greater degrees of genetic modification, immunodeficiency, and/or humanization1. Use of inbred strains results in a largely uniform animal population prior to study inclusion. A complete knowledge of their genome suggests a high degree of similarity to humans. Orthologous molecular targets for many disease processes have been identified in the mouse genome and there is now an extensive library of mouse-specific reagents that are easily obtainable. Therefore, they provide the opportunity for relatively high-throughput analysis in a more rapid and less expensive manner when compared to larger animal models1. In addition, with the advent of genetic editing strategies that allows for the overexpression or deletion of certain genes either globally or in a cell type specific manner and/or constitutively or in an inducible manner, they represent a very biologically useful model system for the investigation of human and animal diseases2.
Cancer is one field in which mouse models have great utility. Genetic mouse models of cancer rely on modulation of the expression of either oncogenes or tumor suppressor genes, alone or in combination, for cells to undergo oncogenic transformation. The injection of primary or established tumor cell lines into mice is also performed. The introduction of either cell lines or tissues from humans or other animal species, including mice, remains the most widely used model of cancer in vivo. The use of cells and tissues from dissimilar species (xenografts) in immunocompromised mice is most commonly performed2. However, the use of allograft tumor cells or tissues where both the host and recipient are of the same species allows for the interaction with an intact immune system when combined with the same host mouse strain in syngeneic systems3.
Primary bone tumors or bone metastasis from solid tumors result in painful osteolytic, osteoblastic, or mixed osteolytic/osteoblastic lesions3,4. These tumors compromise bone structure, increasing the risk of pathologic fracture, and leave patients with limited treatment options. Primary bone tumors metastasize to distant organs, with some types capable of spreading to other skeletal sites. In breast cancer patients, bone is the most common site of first metastasis and the most frequent first site of presentation of metastatic disease5,6. In addition, disseminated tumor cells (DTCs) are present in the bone marrow prior to the diagnosis of, and predict the development of, metastasis in other organs7. Therefore, it is believed that cancer cells present in bone are the source of cells that ultimately metastasize to other organ systems. Many mouse models of solid tumor metastasis exist that develop metastasis predominantly in the lung and lymph nodes, and depending on the tumor type and injection technique, potentially other organ systems3. However, mouse models of bone metastasis are lacking that dependably, reproducibly produce site specific skeletal metastasis and develop bone metastasis before mice reach early removal criteria from primary tumor burden or metastasis to other organs. We have reported a model of the primary bone tumor osteosarcoma that relies on the surgical implantation of a solid tumor allograft into the proximal tibia of mice8. Bone tumors formed in 100% of mice and 88% developed pulmonary metastasis. This incidence of metastasis exceeds what is commonly reported clinically in people (~20-50%), but is of great interest since the lung is the most common site of metastasis for osteosarcoma9,10,11. While this model is advantageous in modeling primary bone tumors, it also has great utility in modeling bone metastasis from other osteotropic solid tumors such as breast, lung, prostate, thyroid, hepatic, renal, and gastrointestinal tumors.
The rationale for the development of this model was to develop an alternative to the traditional intra-osseous injection typically into the proximal tibia or distal femur to model primary bone tumors or bone metastasis12. Our primary goal was to alleviate a known limitation of this technique i.e., tumor embolization of the lung. This results in the engraftment of these embolic tumor cells and “artifactual metastasis” that do not recapitulate the complete metastatic cascade from an established primary bone tumor that metastasizes to the lungs8,13. This would also be the situation when an established bone metastasis spreads to a distant site. In addition, this technique was, also, developed to produce a model of bone metastasis that would ensure a greater incidence of engraftment and growth of tumors in bone and at a uniform site when compared with orthotopic or intravascular injection techniques. This model has distinct advantages over these described techniques. This model involves controlled, consistent delivery of tumor cells into the bone. It, also, avoids artifactual lung metastasis following pulmonary embolization and establishes a baseline uniform study population. There is the benefit of site-specific tumors with this model without the risk of early removal criteria resulting from primary tumors or metastasis to other organs. Lastly, this model has great utility for modification, including the use of patient-derived xenografts.
The model presented has similarities to direct cell suspension injection into bone following a surgical approach followed by either injection through the cortex or delivery into the marrow cavity after making a small defect in the cortex (with or without reaming out the medullary cavity)8,14,15,16,17. However, the implantation of a tumor allograft makes this technique distinctly different. Therefore, the purpose of this report was to demonstrate this model of primary bone tumors and bone metastasis from solid tumors, which overcomes many limitations of previously described models. Research groups with experience in cell culture, mouse models, mouse anesthesia and surgery, and mouse anatomy are well equipped to reproduce our technique to model primary bone tumors or bone metastasis in mice.
All described animal experiments were approved by the institutional animal care and use committee of University of Cambridge, Cambridge, UK.
1. Preparation of cell lines
2. Animals
3. Subcutaneous tumors
4. Surgical implantation of subcutaneous tumor fragments
5. Serial and end point assessment
A positive result would be associated with tumor engraftment and progressive tumor growth over time. Depending on the tumor type, intraosseous tumor growth may be associated with progressive hind limb lameness, but many tumors do not cause lameness despite signs of attendant bone disease. Successful engraftment was documented with advanced imaging, whereby there would be progressive radiographic, µCT, or µMRI changes in the proximal tibia associated with the bone phenotype of the cell line of interest (osteolyt...
This report documents our model to create primary bone tumors or bone metastasis following the intratibial implantation of a tumor allograft. We believe that there are several critical steps in this process. A safe anesthetic plane should be established for both subcutaneous injection of the tumor cell suspension and intratibial placement of the resultant tumor fragments. There should be sterile preparation of the surgical site for both removal of the subcutaneous allograft and intratibial placement of the allograft. Tum...
Dr. Hildreth was funded by the NIH under Award Number K01OD026527. Content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
The authors acknowledge the critical contribution of Dr. Beth Chaffee, DVM, PhD, DACVP to the development of this technique.
Name | Company | Catalog Number | Comments |
#15 scalpel blade | Henry Schein Ltd. | 75614 | None |
6-well tissue culture plates | Thermo Fisher Scientific | 10578911 | Used for mincing tumor pieces. Can also be used for cell culture |
Abrams osteosarcoma cell line | Not applicable | Not applicable | None |
Anesthesia machine with isoflurane vaporiser and oxygen tank(s) | VetEquip | 901805 | None |
Animal weighing scale | Kent Scientific | SCL- 1015 | None |
BALB/c nude mouse (nu/nu) | Charles River Ltd. | NA | 6-8 weeks of age. Male or female mice |
Bone cement | Depuy Synthes | 160504 | Optional use instead of bone wax |
Bone wax | Ethicon | W31G | Optional |
Buprenorphine | Animalcare Ltd. | N/A | Buprecare 0.3 mg/ml Solution for Injection for Dogs and Cats |
Carbon dioxide euthanasia station | N/A | N/A | Should be provided within animal facility |
Cell culture incubator set at 37 °C and 5% carbon dioxide | Heraeus | Various | None |
Chlorhexidine surgical scrub | Vetoquinol | 411412 | None |
Cryovials (2 ml) | Thermo Scientific Nalgene | 5000-0020 | Optional if cryopreserving tumor fragments |
D-luciferin (Firefly), potassium salt | Perkin Elmer | 122799 | Optional if cell line of interest has a bioluminescent reporter gene |
Digital caliper | Mitutoyo | 500-181-30 | Can be manual |
Digital microradiography cabinet | Faxitron Bioptics, LLC | MX-20 | Optional to evaluate bone response to tumor growth |
Dimethyl sulfoxide (DMSO) | Sigma Aldrich | 1371171000 | Optional if cryopreserving tumor fragments |
Dulbecco’s modified Eagle’s medium | Thermo Fisher Scientific | 11965092 | None |
Ethanol (70%) | Sigma Aldrich | 2483 | None |
Fetal bovine serum | Thermo Fisher Scientific | 26140079 | None |
Forceps, Dumont | Fine Science Tools, Inc. | 11200-33 | None |
Freezer (– 80 °C) | Sanyo | MDF-794C | Optional if cryopreserving or snap freezing tumor fragments |
Hemocytometer | Thermo Fisher Scientific | 11704939 | Can also use automated cell counter, if available |
Hypodermic needles (27 gauge) | Henry Schein Ltd. | DIS55510 | May also use 25G (DIS55509) and 30G (Catalog DIS599) needles |
Ice | N/A | N/A | Ideally small pieces in a container for syringe and cell suspension storage |
Iris scissors | Fine Science Tools, Inc. | 14084-08 | None |
Isoflurane | Henry Schein Ltd. | 1182098 | None |
IVIS Lumina III bioluminescence/fluorescence imaging system | Perkin Elmer | CLS136334 | Optional if cell line of interest has bioluminescent or fluorescent reporter genes |
L-glutamine | Thermofisher scientifc | 25030081 | None |
Liquid nitrogen | British Oxygen Corporation | NA | Optional if cryopreserving or snap freezing tumor fragments |
Liquid nitrogen dewar, 5 litres | Thermo Fisher Scientific | TY509X1 | Optional if cryopreserving tumor fragments |
Matrigel® Matrix GFR, LDEV-Free, 5 ml | Corning Life Sciences | 356230 | Optional. Also available in 10 ml size (354230) |
Microcentrifuge | Thermo Fisher Scientific | 75002549 | Pellet cells at 1200 rpm for 5-6 minutes |
Mr. Frosty freezing containiner | Fisher Scientific | 10110051 | Optional if cryopreserving tumor fragments |
NAIR Hair remover lotion/oil | Thermo Fisher Scientific | NC0132811 | Can alternatively use an electric clipper with fine blade |
Penicillin/streptomycin | Sigma-Aldrich | P4333 | None |
Scalpel handle, #7 Short | Fine Science Tools, Inc. | 10007-12 | User preference as long as it accepts #15 scalpel blade |
Small animal heated pad | VetTech | HE006 | None |
Stereomicroscope | GT Vision Ltd. | H600BV1 | None |
Sterile phosphate-buffered saline (PBS) | Thermo Fisher Scientific | 10010023 | Use for injections and also as part of the surgical scrub, alternating with chlorhexidine |
Tissue adhesive (sterile) | 3M Corporation | 84-1469SB | Can alternatively use non-absorbable skin suture (6-0 size) |
Trypan blue | Thermo Fisher Scientific | 5250061 | None |
Trypsin-EDTA | Thermo Fisher Scientific | 25300054 | Use 0.05%-0.25% |
Tuberculin syringe (1 ml with 0.1 ml gradations) | Becton Dickinson | 309659 | Slip tip preferred over Luer |
Vented tissue culture flasks, T-75 | Corning Life Sciences | CLS3290 | Can also use smaller or larger flasks, as needed |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved