JoVE Logo

Sign In

Abstract

Biology

Probing mRNA Kinetics in Space and Time in Escherichia coli using Two-Color Single-Molecule Fluorescence In Situ Hybridization

Published: July 30th, 2020

DOI:

10.3791/61520

1Department of Physics, University of Illinois at Urbana-Champaign, 2Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, 3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 4Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign

Abstract

Single-molecule fluorescence in situ hybridization (smFISH) allows for counting the absolute number of mRNAs in individual cells. Here, we describe an application of smFISH to measure the rates of transcription and mRNA degradation in Escherichia coli. As smFISH is based on fixed cells, we perform smFISH at multiple time points during a time-course experiment, i.e., when cells are undergoing synchronized changes upon induction or repression of gene expression. At each time point, sub-regions of an mRNA are spectrally distinguished to probe transcription elongation and premature termination. The outcome of this protocol also allows for analyzing intracellular localization of mRNAs and heterogeneity in mRNA copy numbers among cells. Using this protocol many samples (~50) can be processed within 8 h, like the amount of time needed for just a few samples. We discuss how to apply this protocol to study the transcription and degradation kinetics of different mRNAs in bacterial cells.

Explore More Videos

Keywords MRNA Kinetics

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved