サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

本稿では、ヒト肺の近位領域および遠位領域からの生存上皮細胞の濃縮を可能にする組織解離および細胞分画アプローチの詳細な方法論を提供する。本明細書では、これらのアプローチは、3Dオルガノイド培養モデルの使用を通じて肺上皮前駆細胞の機能解析に適用される。

要約

上皮オルガノイドモデルは、臓器系の基本的な生物学を研究し、疾患モデリングのための貴重なツールとして役立ちます。オルガノイドとして増殖すると、上皮前駆細胞は自己更新し、 in vivo 対応物と同様の細胞機能を示す分化後代を生成することができる。本明細書では、ヒト肺から領域特異的前駆細胞を単離し、実験および検証ツールとして3Dオルガノイド培養物を生成するための段階的なプロトコルについて説明します。我々は、領域特異的前駆細胞を単離することを目標として、肺の近位領域および遠位領域を定義する。酵素的解離と機械的解離の組み合わせを利用して、肺と気管から全細胞を単離しました。次いで、基底細胞を選別するためのNGFRおよび肺胞II型細胞を選別するためのHTII−280などの細胞型特異的表面マーカーに基づく蛍光関連細胞選別(FACS)を用いて、近位または遠位起源細胞から特異的前駆細胞を分画した。単離された基底または肺胞II型前駆細胞を用いて、3Dオルガノイド培養物を作製した。遠位および近位前駆細胞の両方が、30日目に5000細胞/ウェルを播種した場合、遠位領域で9〜13%、近位領域で7〜10%のコロニー形成効率を有するオルガノイドを形成した。遠位オルガノイドはHTII-280+ 肺胞II型細胞を培養中に維持したが、近位オルガノイドは30日目までに繊毛細胞および分泌細胞に分化した。これらの3Dオルガノイド培養は、肺上皮と上皮間葉相互作用の細胞生物学を研究するための実験ツールとして、ならびに疾患における上皮機能障害を標的とする治療戦略の開発および検証のために使用することができる。

概要

ヒト呼吸器系の空域は、ガスの輸送およびそれに続く上皮 - 微小血管障壁を横切るそれらの交換をそれぞれ媒介する伝導ゾーンおよび呼吸ゾーンに大別することができる。伝導気道には気管、気管支、細気管支および末期細気管支が含まれ、呼吸空気空間には呼吸細気管支、肺胞管および肺胞が含まれる。これらの空域の上皮ライニングは、機能的に異なる各ゾーンの固有の要件に対応するために、近位 - 遠位軸に沿った組成の変化。気管気管気道の偽層化上皮は、ブラシ、神経内分泌およびイオノサイトを含むあまり豊富ではない細胞型に加えて、基底、分泌および繊毛の3つの主要な細胞型からなる1,2,3。細気管支気道は形態学的に類似した上皮細胞型を有するが、その豊富さと機能的特性には区別がある。例えば、基底細胞は細気管支気道内ではあまり存在せず、分泌細胞は、気管気管支気道において優勢な漿液性および杯細胞と比較して、クラブ細胞の割合が高い。 呼吸帯の上皮細胞は、肺胞管および肺胞のI型(ATI)およびII型(ATII)細胞に加えて、呼吸器細気管支における定義が不十分な直方体細胞型を含む1,4

各ゾーンにおける上皮の維持および再生に寄与する上皮幹および前駆細胞型の同一性は、不完全に記載されており、動物モデル5678の研究から大部分が推測される。マウスにおける研究は、偽層化気道の基底細胞、または細気管支気道のクラブ細胞または肺胞上皮のATII細胞のいずれかが、無制限の自己複製および多能性分化の能力に基づいて上皮幹細胞として機能することを示している7,9,10,11,12 .ヒト肺上皮細胞型の幹性を評価するための遺伝的系統追跡研究を行うことができないにもかかわらず、上皮幹および前駆細胞の機能的可能性を評価するためのオルガノイドベースの培養モデルの利用可能性は、マウスとヒトとの間の比較研究のためのツールを提供する13,14,15,16,17

我々は、ヒト肺の異なる領域から上皮細胞型を単離し、その培養物を3Dオルガノイド系を用いて局所細胞型を要約する方法について記載する。同様の方法が、他の器官系からの上皮細胞の機能解析および疾患モデリングのために開発されている18192021これらの方法は、局所上皮前駆細胞の同定のためのプラットフォームを提供し、それらの調節および微小環境を調査する機構的研究を実行し、疾患モデリングおよび創薬を可能にする。動物モデルで行われた肺上皮前駆細胞の研究は、in vivoまたはin vitroのいずれか解析の恩恵を受けることができますが、ヒト肺上皮前駆細胞の同一性に関する洞察は、モデル生物からの外挿に大きく依存しています。このように、これらの方法は、ヒト肺上皮細胞型の同一性および挙動を、幹/前駆細胞の調節を調査する研究と関連付けるための橋渡しを提供する。

プロトコル

ヒト肺組織は、国際医学振興研究所(IIAM)が開発し、シダーズ・シナイ医療センター内部審査委員会によって承認された同意手順に従って、死亡した組織ドナーから入手した。

1. 気管気管支または小気道/実質(小気道および肺胞)領域から肺細胞を単離するための組織処理

  1. 細胞単離の1日前に、すべての解剖器具、ガラス製品、および適切な溶液を準備してオートクレーブします。
  2. 肺組織を受け取ったら、近位領域と遠位領域を同定して分離する。気管と気管支は「近位」と見なされます。このプロトコルの目的のために、気管および気管支の最初の2〜3世代が解剖され、「近位」気道上皮の単離に使用される。直径2mm以下の小さな気道および周囲の実質組織は、このプロトコールの目的上、「遠位」肺上皮と見なされる(図1A)。
    注:ヒト肺組織の処理を含むすべての手順は、適切な個人用保護具を使用してバイオセーフティキャビネット内で実行する必要があります。

2. 遠位肺組織からの小気道および肺胞上皮前駆細胞の濃縮およびサブセット化

  1. 遠位組織調製
    1. 遠位肺組織を滅菌ペトリ皿(150 x 15 mm)に入れます。組織を約1cm3 個にサイコロで割って、清潔な50mLチューブに入れます。
    2. 冷却したHBSSで組織を3x洗浄し、その都度HBSS洗浄物を廃棄し、血液および上皮内層液を除去する。
    3. ティッシュを新しいペトリ皿に入れ、滅菌した糸くず防止ワイプで拭き取って乾かします。鉗子やはさみを使って、できるだけ多くの内臓胸膜(肺の表面を覆う繊細な透明な膜)を取り除きます。
    4. はさみを使用して、組織を直径約2mmの断片に細かく刻みます。ミンチ組織を清潔なペトリ皿に移し、滅菌片面カミソリブレードでおおよそ1mmの大きさに刻んでさらにミンチします。
  2. 酵素消化
    注:リベラーゼストック溶液は5 mg/mL(100x)で、DNaseストックは2.5 mg/mL(100x)です(材料表)。
    1. 50 μg/mL のリベラーゼと 25 μg/mL の DNase を 50 mL の円錐管内の滅菌 HBSS に加えます。
    2. 約2〜3gのミンチ組織を、リベラーゼおよびDNaseを含む25mLのHBSSを含む新しい50mL円錐形チューブに移す。900rpmに設定したミキサーを用いて連続振とうしながら37°Cで40〜60分間インキュベートする。30分間のインキュベーション後、塊の形成を避けるために針のない30mLシリンジを使用して消化組織をトリチュレートし、インキュベーションを続行する。
      注:酵素とのインキュベーション時間は、組織の種類または状態によって変化し得る。例えば、正常組織の酵素消化には約45分かかる。しかしながら、特発性肺線維症サンプルからの線維性組織は、最大60分のより長いインキュベーション時間を必要とし得る。したがって、FACSにとって極めて重要な表面マーカーの損傷を防ぐために、このステップ中に組織を注意深く監視してください。
  3. 単一細胞分離
    1. 30mLシリンジに取り付けられた16G針を通して5xを引いて組織をトリチュレートする。組織懸濁液を広口径ピペットに引き出し、真空圧力下で一連の細胞ストレーナー(500 μm、300 μm、100 μm、70 μm、40 μm)を通過させます。ストレーナーを20mLのHBSS+バッファーで洗浄し、残りの細胞を回収します。HBSS+バッファーのレシピは、材料表に記載されています。
    2. 等量のHBSS+バッファーを濾液に45分後に加え、リベラーゼ活性を阻害し、過剰消化を防止します。
    3. 遠心分離機濾液を500 x g で4°Cで5分間遠心分離する。 上清を慎重に取り除き、廃棄します。ペレットに1mLの赤血球(RBC)溶解バッファーを加え、チューブを静かに揺らしてペレットを脱ぎ捨て、氷上で1分間インキュベートする。
      注:RBC溶解溶液中の量および時間は、ペレットのサイズに依存する。標的細胞の溶解を防ぐために、氷上で細胞を維持し、RBC溶解溶液中の時間を注意深く監視することが重要です。RBC溶解が不十分な場合は、この手順を繰り返します。
    4. 10 ~ 20 mL の HBSS+ バッファーを加えて、RBC 溶解バッファーを中和します。遠心分離機濾液を500 x g で4°Cで5分間遠心分離する。
    5. 溶解した赤血球(ゴースト細胞)が細胞ペレットの上に白濁層を形成する場合は、ペレットを10 mLのHBSS+バッファーに再懸濁し、懸濁液を70 μmのセルストレーナーでこすり、ゴースト細胞を除去します。濾液を500 x g で4°Cで5分間遠心分離し、さらにステップを進める。
  4. 免疫細胞および内皮細胞の枯渇(任意の工程)
    1. モノクローナル抗ヒトCD31およびCD45抗体(アイソタイプマウスIgG1)およびLSカラムにコンジュゲートしたCD31&CD45マイクロビーズを用いて、全細胞のプールからCD31+ 内皮細胞およびCD45+ 免疫細胞を枯渇させる(材料表)。
    2. 主に上皮細胞と間質細胞からなるフローを新鮮な滅菌チューブに集め、500 x g で4°Cで5分間遠心分離します。 セル数を実行して、フロースルー内のセルの総数を確認します。
  5. 蛍光関連細胞ソーティング(FACS)のための細胞表面染色
    1. HBSS+ バッファー 1 mL あたり 1 x 107 個の細胞を再懸濁します。必要な濃度で一次抗体を添加し、暗所で4°Cで30分間細胞をインキュベートします。本研究では、特に断りのない限り、フルオロフォア結合一次抗体を使用した。抗体源および力価の詳細は、 材料表に記載されている。
      注:HTII-280は現在、遠位肺細胞を主に気道(HTII-280-)および肺胞2型(HTII-280+)細胞画分にサブセットすることを可能にする最良の表面反応性抗体です。この戦略の注意点は、AT1細胞はこの方法を使用して染色されず、その脆弱性のためにあまり表現されないことである。しかしながら、AT1細胞は、おそらくFACSによる生細胞の選択中のそれらの脆弱性および損失のために、遠位肺プレップにおいてほとんど発現されず、したがって気道細胞画分のまれな汚染物質のみを表す。
    2. 3 mLのHBSS+バッファーを加えて細胞を洗浄し、500 x g で4°Cで5分間遠心分離します。
    3. コンジュゲートされていない一次抗体を使用する場合は、必要な濃度の適切なフルオロフォアコンジュゲート二次抗体を追加し、氷上で30分間インキュベートします。3mLのHBSS+緩衝液を加えて過剰の二次抗体を洗い流し、500 x g で4°Cで5分間遠心分離します。
    4. 上清を捨て、1 x107 cells/mLあたりHBSS+バッファーに細胞を再懸濁します。ストレーナーキャップを通して細胞を5mLポリスチレンチューブにろ過し、単一細胞懸濁液の形成を確実にします。DAPI(1 μg/mL)を加えて透過性(死細胞)を染色する。
      注:FACS中の偽陽性を最小限に抑えるために、適切な単色および蛍光マイナス1(FMO)コントロール(すなわち、抗体染色カクテルから各1抗体を引いたもの)を使用することが不可欠です。この研究では、蛍光色素間の発光スペクトルの重なりに対する経験的補償のために、正選択ビーズおよび負選択ビーズを使用しました(材料表)。FACSは、関心のある細胞型を豊かにする。生存可能な上皮細胞は、それらのCD45陰性、CD31陰性、CD236陽性細胞表面表現型およびDAPIの陰性染色に基づいて濃縮される。この上皮細胞画分は、AT2細胞について富化されているHTII−280陽性細胞に対する特異的染色などの、細胞型特異的表面マーカーに対する染色に基づいてさらにサブセット化され得る。対照的に、HTII-280のネガティブセレクションは、クラブ細胞や繊毛細胞などの小さな気道上皮細胞の濃縮を可能にする(図2)。

3. 気管気管気道からの上皮前駆細胞の濃縮とサブセット化

  1. 組織調製
    1. 肺から近位気道(気管/気管支)を解剖する。はさみを使用して内腔を露出させ、組織を完全に覆うために50μg/mLのリベラーゼを加えて、その長さに沿って気道を開きます。
    2. 900rpmに設定したサーモミキサーを用いて連続振とうしながら37°Cで20分間インキュベートする。
    3. 遠心管から近位気道を取り外し、滅菌ペトリ皿(150 x 15 mm)に入れます。メスを使用して気道の表面を静かにこすり、組織から管腔上皮細胞を完全に剥ぎ取ります。
    4. 5 mLの滅菌HBSS+バッファーでシャーレを洗浄し、脱落したすべての管腔上皮細胞を収集し、脱落した細胞を50 mL円錐形遠心管に移します。10 mL シリンジに取り付けた 16 G 針と 18 G 針を通して 5x を引いて懸濁液をトリチュールし、単一細胞懸濁液を得ます。
    5. 懸濁液を500 x g で4°Cで5分間遠心分離する。 ペレットを新鮮なHBSS+バッファーに再懸濁し、これらの管腔気道細胞を氷上に保存して、今後のステップでミンチ近位気道から生成された単一細胞懸濁液と組み合わせる準備ができています。
    6. はさみを使用して、残りの気管気管支組織をリングに沿って切断して小さな組織のストリップを生成し、ストリップを新鮮なペトリ皿に移します。片面のカミソリの刃を使用してティッシュストリップをミンチし、より小さな部分を作ります。
      注:近位気道は軟骨性であるため、遠位肺組織ほど細かく細かく細切ることはできません。
    7. ミンチ組織をCチューブに移し、2mLのリベラーゼをチューブに加え、組織が水没することを確認する。Cチューブを自動解離器にロードし、ヒト肺プロトコル-2を実行して組織をさらに機械的に解離させます。
      注:このプロトコルで使用される解離器は、この特定のアプリケーション向けにヒト肺protocol-2と呼ばれる最適化されたプログラムを提供します( 材料表を参照)。
  2. 酵素消化と単一細胞単離
    1. 約2gのミンチ近位組織をCチューブから各50mL円錐形遠心チューブに移し、50μg/mLリベラーゼおよび25μg/mLDNase溶液を各チューブに加える。
      メモ:効率的な解離を確実にするために、チューブは30 mLマークを超えて充填しないでください。
    2. ミンチ組織を37°Cで45分間インキュベートし、900rpmに設定したミキサーを用いて連続振とうした。
    3. 解離した組織懸濁液を、上記のように真空圧力下で一連のセルストレーナー(500 μm、300 μm、100 μm、70 μm、40 μm)に通し、流れを回収する。ストレーナーを20mLのHBSS+バッファーで洗浄し、残りの細胞を回収します。
      注:近位組織は遠位組織と比較して軟骨性でかさばるため、フィルターの目詰まりの可能性が高くなります。漏斗を使用すると、ストレーナーを通過する際の液体の溢れ出しを防ぐのに役立ちます。
    4. 等量のHBSS+バッファーを濾液に加え、リベラーゼ活性を阻害し、過剰消化を防ぎます。このステップで、単離した3.1.5の近位気道細胞を細胞懸濁液に加える。
    5. 結合した細胞懸濁液を500 x gで10分間遠心分離する。上清を除去し、HBSS+バッファーで細胞洗浄を繰り返します。2.4で上記のようなCD45+免疫細胞およびCD31+内皮細胞の枯渇を行う(任意の工程)。
    6. 染色の方法は遠位肺組織と同様であり、2.5のステップに従う。生存可能な上皮細胞を、それらのCD45陰性、CD31陰性、CD236陽性細胞表面表現型およびDAPIの陰性染色に基づいて濃縮する。
    7. さらに、NGFRなどの細胞型特異的表面マーカーの染色に基づいて上皮細胞画分をサブセットし、基底(NGFR陽性)および非基底(NGFR陰性;分泌、繊毛、神経内分泌)細胞型の濃縮を可能にする(図3)。

4. オルガノイド培養

  1. 5,000個(この数は、上皮オルガノイドの所望の密度を得るために調整することができる)を選別した近位または遠位上皮細胞を、7.5 x104 個のMRC-5細胞(ヒト肺線維芽細胞株)と共に滅菌1.5mLチューブに加える。上皮間葉相互作用は、前駆細胞の拡張に重要である。
  2. 500 x g で4°Cで5分間遠心分離する。
    注:オルガノイドコロニー形成効率を正確に確保するために、ソーターから得られた細胞数を手動で確認することが重要です。
  3. 上清を慎重に取り出して廃棄し、抗生物質を添加した50μLの氷冷培地に細胞ペレットを再懸濁する。細胞懸濁液を氷上に保ちます。
  4. 氷冷1x成長因子枯渇基底膜マトリックス培地50μLをバイアルに加え、懸濁液を氷上で穏やかにピペットでピペットして混合する。
    注:基底膜マトリックス媒体の早期重合を避けるために、氷冷培地を使用し、氷上で細胞を維持することが重要です。
  5. 気泡の導入を避けるように注意しながら、細胞懸濁液を24ウェルプレート(1.4 x 104 cells/cm2)の0.4 μm孔径の細胞培養インサートに移します。
  6. マトリックスが固まるように37°Cで30〜45分間インキュベートします。
  7. 予め加温した増殖培地600 μLをウェルに加える。
    注:培地には、播種後最初の24時間は抗真菌剤(0.4%)およびペン連鎖球菌(1%)を、最初の72時間は10μMのRhoキナーゼ阻害剤を補充した。
  8. 5%CO2 インキュベーター中で37°Cで30日間培養し、その間、培地を48時間ごとに交換する必要があります。
    注:培養期間は、実験の目的に基づいて変更することができます。より長いエンドポイントは分化の研究に使用されますが、実験の目的が完全な分化を達成することではない場合は、7日、14日などの短いエンドポイントを使用できます。
  9. 10 μM TGFβ阻害剤を培養液に15日間添加して、細胞を増殖期に維持し、線維芽細胞の過剰増殖を抑制する。
    注:アッセイに使用した培地によって結果は異なります。例えば、本明細書に示される結果は、Pneumacult−ALI培地を用いて生成され、これは、遠位肺からの大きなオルガノイド、近位肺からの十分に分化したより大きなオルガノイドの生成をもたらす。

5. オルガノイド染色

  1. オルガノイドの固定と埋め込み
    1. 上部と下部の両方の膜貫通挿入チャンバーから媒体を吸引し、温かいPBSで1回すすいでください。
    2. 培養物を固定するには、300 μL の PFA (2% w/v) をインサートに、500 μL をウェルに入れ、37°C で 1 時間培養します。 固定液を取り出し、ベースメムト膜マトリックスプラグをはがさないように注意しながら、温かいPBSですすいでください。
      注:固定オルガノイドは、さらなるステップを開始する前に、4°CのPBSに1〜2週間沈めて保存することができます。
    3. PBSを吸引し、インサートを反転させ、その周囲の周りにインサート膜を慎重に切断する。鉗子を使用して、マトリックスプラグを乱さないように注意しながら、トランスウェル膜を取り外します。
    4. シャーレで、インサートをタップしてマトリックスプラグを回収します。
    5. マトリックスプラグにヒストーゲル(37°Cに維持)などの検体処理ゲルを1滴加え、ゲルが固化するまで4°Cに維持する。
    6. プラグを包埋カセットに移し、エタノール(70、90および100%)の濃度を増加させて脱水し、キシレンで透明にし、パラフィンワックスに包埋する。
    7. ミクロトーム上で7μmの切片を切り取り、正に帯電したスライドに集める。
  2. オルガノイドの免疫蛍光染色
    1. スライドを65°Cで30分間置き、脱ろうします。
    2. キシレンに浸漬して切片を脱パラフィン化し、エタノール濃度を下げて再水和する。
    3. 抗原マスク解除溶液中で高温抗原検索を行い、市販のレトリーバーを用いてクエン酸塩基溶液にスライドを15分間浸漬した(材料表)。
    4. パップペンを使用して疎水性バリアで組織を囲みます。
    5. 一次抗体と組織との間の非特異的染色をブロック、ブロッキングバッファー中でインキュベートすることによって。
    6. インキュベーション溶液で希釈した一次抗体の適切な濃度で切片を加湿チャンバー内で4°Cで一晩インキュベートする。
    7. 切片3xを洗浄緩衝液で室温ですすいでください。
    8. 蛍光色素結合二次抗体を適切な濃度で室温で1時間インキュベートする。
    9. 切片を室温で3倍すすぎ、0.1%トゥイーン20TBSで切片をすすぎ、切片をDAPI(1 μg/mL)中で5分間インキュベートします。切片を0.1%Tween 20でTBS(トリス緩衝生理食塩水)に1回すすぎ、乾燥させて取り付け液に取り付けます(図4 および 図5)。
      注:免疫蛍光染色に使用される一次抗体および二次抗体のソースおよび最適な作業希釈は、 材料表に含まれています。

結果

ソース肺組織
気管および肺外気管支(図1A)を、近位気道上皮細胞の単離およびその後の近位オルガノイドの生成のための供給源組織として使用した。実質および直径2mm未満の小さな気道の両方を含む遠位肺組織(図1A)を、小さな気道および肺胞上皮細胞(遠位肺上皮)の単離および小気道または肺胞オルガノイドの生成に使用した。偽層...

ディスカッション

我々は、分子的または機能的解析および疾患モデリングのために、ヒト肺組織から肺細胞の定義された部分集団を単離するための信頼できる方法を説明する。方法の重要な要素には、新たに単離された細胞の抗体媒介濃縮を可能にする表面エピトープの保存による組織解離を達成する能力、および領域特異的上皮オルガノイドの効率的な生成のための培養方法の最適化が含まれる。我々は、?...

開示事項

著者は開示するものは何もありません。

謝辞

IFCおよびHおよびE染色の水野貴子、組織切片のヴァネッサ・ガルシア、原稿作成の支援に対するアニカ・S・チャンドラセカランのサポートに感謝します。この研究は、国立衛生研究所(5RO1HL135163-04、PO1HL108793-08)とセルジーンIDEALコンソーシアムによってサポートされています。

資料

NameCompanyCatalog NumberComments
Cell Isolation
10 mL Sterile syringes, Luer-Lok TipFisher scientificBD 309646
30 mL Sterile syringes, Luer-Lok TipVWRBD302832
Biohazard bagsVWR89495-440
Biohazard bagsVWR89495-440
connecting ringPluriselect41-50000-03
Deoxyribonuclease (lot#SLBF7798V)sigma AldrichDN25-1G
Disposable Petri dishesCorning/Falcon25373-187
FunnelPluriselect42-50000
HBSSCorning21-023
Liberase TM Research Gradesigma Aldrich5401127001
needle 16GVWR305198
needle 18GVWR305199
PluriStrainer 100 µm (Cell Strainer)Pluriselect43-50100-51
PluriStrainer 300 µm (Cell Strainer)Pluriselect43-50300-03
PluriStrainer 40 µm (Cell Strainer)Pluriselect43-50040-51
PluriStrainer 500 µm (Cell Strainer)Pluriselect43-50500-03
PluriStrainer 70 µm (Cell Strainer)Pluriselect43-50070-51
Razor bladesVWR55411-050
Red Blood Cell lysis buffereBioscience00-4333-57
Equipment’s
GentleMACS C TubesMACS Miltenyi Biotec130-096-334
GentleMACS Octo DissociatorMACS Miltenyi Biotec130-095-937
Leica ASP 300s Tissue processor
LS ColumnsMACS Miltenyi Biotec130-042-401
MACS MultiStand**Miltenyi Biotech130-042-303
ThermomixerEppendorf05-412-503
ThermomixerEppendorf05-412-503
HBSS+ Buffer
Amphotericin BThermo fisher scientific152900182ml
EDTA (0.5 M), pH 8.0, RNase-freeThermo fisher scientificAM9260G500µl
Fetal Bovine SerumGemini Bio-Products100-10610ml
HBSS Hank's Balanced Salt Solution 1X 500 mlVWR45000-456500ml bottle
HEPES (1 M)Thermo fisher scientific156300805ml
Penicillin-Streptomycin-Neomycin (PSN) Antibiotic MixtureThermo fisher scientific156400555ml
List of antibodies for FACS
Alexa Fluor 647 anti-human CD326 (EpCAM) AntibodyBioLegend3698201:50
BD CompBead Anti-Mouse Ig, K/ Negative control particles setFisher ScientificBDB552843
CD31 MicroBead Kit, humanMiltenyi Biotec130-091-93520µl/ 107 total cells
CD45 MicroBeads, humanMiltenyi Biotec130-045-80120µl/ 107 total cells
DAPISigma AldrichD9542-10MG1:10000
FITC anti-human CD235aBioLegend3491041:100
FITC anti-human CD31BioLegend3031041:100
FITC anti-human CD45BioLegend3040541:100
FITC anti-mouse IgM AntibodyBioLegend4065061:500
Mouse IgM anti human HT2-280Terrace BiotechTB-27AHT2-2801:300
PE anti-human CD271(NGFR)BioLegend3451061:50
Composition of Organoid Culture mediums
MRC-5ATCCCCL-171
PneumaCult -ALI MediumStemcell Technologies5001
Small Airway Epithelial Cell Growth MediumPromoCellC-21170
ThinCert Tissue Culture Inserts, SterileGreiner Bio-One662641
Y-27632 (ROCK inhibitor) 100mM stock (1000x)Stemcell Technologies72302
Mouse Basal medium:
Amphotericin BThermo fisher scientific1529001850 µl
DMEM/F-12, HEPESThermoFisher scientific1133003250 ml
Fetal Bovine SerumGemini Bio-Products100-1065 ml
Insulin-Transferrin-Selenium (ITS -G) (100X)ThermoFisher scientific41400045500 µl
Penicillin-Streptomycin-Neomycin (PSN) Antibiotic MixtureThermo fisher scientific15640055500 µl
SB431542 TGF-β pathway inhibitor (stock 100 mM)Stem cell722345 µl
List of antibodies for Immunohistochemistry
Antigen unmasking solution, citric acid basedVectorH-3300937 µl in 100ml water
HistogelThermo ScientificHG-4000-012
Primary Antibodies
Anti HT2-280TerracebiotechTB-27AHT2-2801:500
FOXJ1 Monoclonal Antibody (2A5)Thermo Fisher Scientific14-9965-821:300
Human Uteroglobin/SCGB1A1 AntibodyR and D systemsMAB42181:300
Keratin 5 Polyclonal Chicken Antibody, Purified [Poly9059]Biolegend9059011:500
MUC5AC Monoclonal Antibody (45M1)Thermo Fisher ScientificMA5-121781:300
PDPN / Podoplanin Antibody (clone 8.1.1)LifeSpan BiosciencesLS-C143022-1001:300
Purified Mouse Anti-E-CadherinBD biosciences6101821:1000
Sox-2 AntibodySanta Cruz biotechnologiessc-3659641:300
Secondary Antibodies
Donkey anti-rabbit lgG, 488Thermo Fisher ScientificA-212061:500
FITC anti-mouse IgM AntibodyBioLegend4065061:500
Goat anti-Hamster IgG (H+L), Alexa Fluor 594Thermo Fisher ScientificA-211131:500
Goat anti-Mouse IgG1 Cross-Adsorbed Secondary Antibody, Alexa Fluor 488Thermo Fisher ScientificA-211211:500
Goat anti-Mouse IgG2a Cross-Adsorbed Secondary Antibody, Alexa Fluor 488Thermo Fisher ScientificA-211311:500
Goat anti-Mouse IgG2a Cross-Adsorbed Secondary Antibody, Alexa Fluor 568Thermo Fisher ScientificA-211341:500
Goat anti-Mouse IgG2b Cross-Adsorbed Secondary Antibody, Alexa Fluor 568Thermo Fisher ScientificA-211441:500
Buffers
Immunohistochemistry Blocking Solution3% BSA, o.4% Triton-x100 in TBS (Tris based saline)
Immunohistochemistry Incubation Solution3% BSA, ).1% Triton-X100 in TBS
Immunohistochemistry Washing SolutionTBS with 0.1% Tween 20

参考文献

  1. Rackley, C. R., Stripp, B. R. Building and maintaining the epithelium of the lung. Journal of Clinical Investigation. 122 (8), 2724-2730 (2012).
  2. Montoro, D. T., et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 560 (7718), 319-324 (2018).
  3. Plasschaert, L. W., et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 560 (7718), 377-381 (2018).
  4. Barkauskas, C. E., et al. Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation. 123 (7), 3025-3036 (2013).
  5. Barkauskas, C. E., et al. Lung organoids: current uses and future promise. Development. 144 (6), 986-997 (2017).
  6. Leeman, K. T., Fillmore, C. M., Kim, C. F. Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease. Stem Cells in Development and Disease. 107, 207-233 (2014).
  7. Rawlins, E. L., et al. The Role of Scgb1a1(+) Clara Cells in the Long-Term Maintenance and Repair of Lung Airway but Not Alveolar, Epithelium. Cell Stem Cell. 4 (6), 525-534 (2009).
  8. Rock, J. R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 106 (31), 12771-12775 (2009).
  9. Chang, W. I., et al. Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. Plos Genetics. 4 (4), 1000050 (2008).
  10. McQualter, J. L., Bertoncello, I. Concise Review: Deconstructing the Lung to Reveal Its Regenerative Potential. Stem Cells. 30 (5), 811-816 (2012).
  11. Gonzalez, R. F., Allen, L., Gonzales, L., Ballard, P. L., Dobbs, L. G. HTII-280, a Biomarker Specific to the Apical Plasma Membrane of Human Lung Alveolar Type II Cells. Journal of Histochemistry & Cytochemistry. 58 (10), 891-901 (2010).
  12. Rock, J. R., et al. Notch-Dependent Differentiation of Adult Airway Basal Stem Cells. Cell Stem Cell. 8 (6), 639-648 (2011).
  13. Page, H., Flood, P., Reynaud, E. G. Three-dimensional tissue cultures: current trends and beyond. Cell and Tissue Research. 352 (1), 123-131 (2013).
  14. Hynds, R. E., Giangreco, A. Concise Review: The Relevance of Human Stem Cell-Derived Organoid Models for Epithelial Translational Medicine. Stem Cells. 31 (3), 417-422 (2013).
  15. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345 (6194), (2014).
  16. Weber, C. Organoids test drug response. Nature Cell Biology. 20 (6), 634 (2018).
  17. Fatehullah, A., Tan, S. H., Barker, N. Organoids as an in vitro model of human development and disease. Nature Cell Biology. 18 (3), 246-254 (2016).
  18. Nikolic, M. Z., Rawlins, E. L. Lung Organoids and Their Use To Study Cell-Cell Interaction. Current Pathobiology Reports. 5 (2), 223-231 (2017).
  19. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  20. Reynolds, B. A., Rietze, R. L. Neural stem cells and neurospheres--re-evaluating the relationship. Nature Methods. 2 (5), 333-336 (2005).
  21. Chua, C. W., et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology. 16 (10), 951-961 (2014).
  22. Teisanu, R. M., et al. Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. American Journal of Respiratory and Cellular Molecular Biology. 44 (6), 794-803 (2011).
  23. Chen, H., et al. Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells. 30 (9), 1948-1960 (2012).
  24. Benam, K. H., et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nature Methods. 13 (2), 151-157 (2016).
  25. Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  26. Jain, A., et al. Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clinical Pharmacology & Therapeutics. 103 (2), 332-340 (2018).
  27. Mulay, A., et al. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. bioRxiv. , (2020).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

161IIFACS

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved