Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The genetically tractable nematode Caenorhabditis elegans can be used as a simple and inexpensive model for drug discovery. Described here is a protocol to identify anticancer therapeutics that inhibit the downstream signaling of RAS and EGFR proteins.

Abstract

The changes in the plasma membrane localization of the epidermal growth factor receptor (EGFR) and its downstream effector RAS have been implicated in several diseases including cancer. The free-living nematode C. elegans possesses an evolutionary and functionally conserved EGFR-RAS-ERK MAP signal cascade which is central for the development of the vulva. Gain of function mutations in RAS homolog LET-60 and EGFR homolog LET-23 induce the generation of visible nonfunctional ectopic pseudovulva along the ventral body wall of these worms. Previously, the multivulval (Muv) phenotype in these worms has been shown to be inhibited by small chemical molecules. Here we describe a protocol for using the worm in a liquid-based assay to identify inhibitors that abolish the activities of EGFR and RAS proteins. Using this assay, we show R-fendiline, an indirect inhibitor of K-RAS, suppresses the Muv phenotype expressed in the let-60(n1046) and let-23(sa62) mutant worms. The assay is simple, inexpensive, is not time consuming to setup, and can be used as an initial platform for the discovery of anticancer therapeutics.

Introduction

The cellular pathways that regulate developmental events within organisms are highly conserved among all metazoans. One such pathway is the EGFR-RAS-ERK mitogen activated protein kinase (MAPK) signaling cascade which is a critical pathway that governs cell proliferation, differentiation, migration and survival1,2. Defects in this signaling pathway can lead to pathological or disease states such as cancer. The epidermal growth factor receptor (EGFR) has shown to be highly expressed in human tumors, including 50% of oral squamous cell carcinomas, and contributes to the development of malignant tumors

Protocol

1. Nematode growth medium (NGM) plate preparation

  1. Add 2.5 g of peptone and 3 g of NaCl to 970 mL of deionized water contained in a 2 L Erlenmeyer flask. Stir contents using a magnetic stir bar. Thereafter, add 20 g of agar to the flask. Autoclave the contents of the flask at 121 °C and a pressure of 15 lb/in2 for 30 min. After sterilization, place the flask on a stir plate and allow the medium to cool until the temperature reaches 50 °C.
  2. To prepare the NGM plates add the followi.......

Representative Results

We first demonstrate that R-fendiline is able to suppress the Muv phenotype in the let-60(n1046) mutant strain compared to the DMSO treated worms. Our data shows that R-fendiline is able to block the Muv phenotype in the let-60(n1046) in a dose-dependent manner (Figure 2A,B). However, non-reversal of the Muv phenotype was observed in the lin-1 null mutant strain in response to increasing concentrations of R-fendiline (Figure 2B.......

Discussion

The assays we describe using the worm are simple and inexpensive to identify inhibitors of EGFR and RAS function. C. elegans is an attractive model for drug discovery because it is easy to grow in the lab due to the short life cycle (3 days at 20 °C) and the ability to generate large numbers of larvae. More importantly, the EGFR-RAS-ERK MAPK pathway is evolutionarily and functionally conserved with mammals providing a genetically tractable system to analyze the effects of EGFR and RAS inhibitors. Further, t.......

Acknowledgements

We thank Dr. Swathi Arur (MD Anderson Cancer Center) for providing the let-60(n1046). We also thank Dr. David Reiner (Texas A&M Health Science Center Institute of Biosciences & Technology in Houston) for the lin-1 strain. Finally, we thank Dr. Danielle Garsin and her lab (The University of Texas, McGovern Medical School) for providing some of the reagents. Some worm strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This Research was supported by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP200047 to JF Hancock.

....

Materials

NameCompanyCatalog NumberComments
Media and chemicals
Agarose Millipore Sigma A9539-50G
Bacto Peptone Fisher ScientificDF0118-17-0
BD Difco Agar Fisher ScientificDF0145-17-0
BD Difco LB BrothFisher ScientificDF0446-17-3
Calcium ChlorideFisher ScientificBP510-500
CholesterolFisher ScientificICN10138201
Magnesium SulfateFisher ScientificBP213-1
NystatinAcros organicsAC455500050
Potassium Phosphate DibasicFisher ScientificBP363-500
Potassium pPhosphate MonobasicFisher ScientificBP362-500
R-FendilineCommercially Synthesized (Pharmaceutical grade)
Sodium AzideMillipore Sigma S2002-25G
Sodium chloride Fisher ScientificBP358-1
Sodium HydroxideFisher ScientificSS266-1
8.25% Sodium Hypochlorite Bleach
Sodium Phosphate Dibasic Fisher ScientificBP332-500
Streptomycin Sulfate Fisher ScientificBP910-50
(−)-Tetramisole HydrochlorideMillipore Sigma L9756
UO126 (MEK inhibitor)Millipore Sigma 19-147
Consumables 
15mL Conical Sterile Polypropylene Centrifuge Tubes Fisher Scientific12-565-269
50mL Conical Sterile Polypropylene Centrifuge TubesFisher Scientific12-565-271
Disposable Polystyrene Serological Pipettes 10mLFisher Scientific07-200-574
Disposable Polystyrene Serological Pipettes 25mLFisher Scientific07-200-575
No. 1.5  18 mm X 18 mm Cover SlipsFisher Scientific12-541A
Petri Dish with Clear Lid (60 x 15 mm)Fisher ScientificFB0875713A
Petri Dishes with Clear Lid (100X15mm)Fisher ScientificFB0875712
Plain Glass Microscope Slides (75 x 25 mm)Fisher Scientific12-544-4
12- Well Tissue Culture PlatesFisher Scientific50-197-4804
Software 
PrismGraphpad
Bacterial Strains
E. coli OP50
Worm Strains
StrainGenotypeTransgeneSource
MT2124  let-60(n1046) IV.CGC
MT7567lin-1(sy254) IV.CGC
PS1839let-23(sa62) II.CGC

References

  1. Marshall, M. Interactions between Ras and Raf: key regulatory proteins in cellular transformation. Molecular Reproduction and Development. 42 (4), 493-499 (1995).
  2. Whelan, J. T., Hollis, S. E., Cha, D. S., Asch, A. S., Lee, M. H.

Explore More Articles

EGFRRASCaenorhabditis ElegansDrug DiscoveryAnti EGFRAnti RASTherapeuticsE Coli OP50NGM PlatesGravid Adult WormsWorm LysisEmbryosL1 LarvaeM9W

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved