A subscription to JoVE is required to view this content. Sign in or start your free trial.
The genetically tractable nematode Caenorhabditis elegans can be used as a simple and inexpensive model for drug discovery. Described here is a protocol to identify anticancer therapeutics that inhibit the downstream signaling of RAS and EGFR proteins.
The changes in the plasma membrane localization of the epidermal growth factor receptor (EGFR) and its downstream effector RAS have been implicated in several diseases including cancer. The free-living nematode C. elegans possesses an evolutionary and functionally conserved EGFR-RAS-ERK MAP signal cascade which is central for the development of the vulva. Gain of function mutations in RAS homolog LET-60 and EGFR homolog LET-23 induce the generation of visible nonfunctional ectopic pseudovulva along the ventral body wall of these worms. Previously, the multivulval (Muv) phenotype in these worms has been shown to be inhibited by small chemical molecules. Here we describe a protocol for using the worm in a liquid-based assay to identify inhibitors that abolish the activities of EGFR and RAS proteins. Using this assay, we show R-fendiline, an indirect inhibitor of K-RAS, suppresses the Muv phenotype expressed in the let-60(n1046) and let-23(sa62) mutant worms. The assay is simple, inexpensive, is not time consuming to setup, and can be used as an initial platform for the discovery of anticancer therapeutics.
The cellular pathways that regulate developmental events within organisms are highly conserved among all metazoans. One such pathway is the EGFR-RAS-ERK mitogen activated protein kinase (MAPK) signaling cascade which is a critical pathway that governs cell proliferation, differentiation, migration and survival1,2. Defects in this signaling pathway can lead to pathological or disease states such as cancer. The epidermal growth factor receptor (EGFR) has shown to be highly expressed in human tumors, including 50% of oral squamous cell carcinomas, and contributes to the development of malignant tumors
1. Nematode growth medium (NGM) plate preparation
We first demonstrate that R-fendiline is able to suppress the Muv phenotype in the let-60(n1046) mutant strain compared to the DMSO treated worms. Our data shows that R-fendiline is able to block the Muv phenotype in the let-60(n1046) in a dose-dependent manner (Figure 2A,B). However, non-reversal of the Muv phenotype was observed in the lin-1 null mutant strain in response to increasing concentrations of R-fendiline (Figure 2B.......
The assays we describe using the worm are simple and inexpensive to identify inhibitors of EGFR and RAS function. C. elegans is an attractive model for drug discovery because it is easy to grow in the lab due to the short life cycle (3 days at 20 °C) and the ability to generate large numbers of larvae. More importantly, the EGFR-RAS-ERK MAPK pathway is evolutionarily and functionally conserved with mammals providing a genetically tractable system to analyze the effects of EGFR and RAS inhibitors. Further, t.......
We thank Dr. Swathi Arur (MD Anderson Cancer Center) for providing the let-60(n1046). We also thank Dr. David Reiner (Texas A&M Health Science Center Institute of Biosciences & Technology in Houston) for the lin-1 strain. Finally, we thank Dr. Danielle Garsin and her lab (The University of Texas, McGovern Medical School) for providing some of the reagents. Some worm strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This Research was supported by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP200047 to JF Hancock.
....Name | Company | Catalog Number | Comments |
Media and chemicals | |||
Agarose | Millipore Sigma | A9539-50G | |
Bacto Peptone | Fisher Scientific | DF0118-17-0 | |
BD Difco Agar | Fisher Scientific | DF0145-17-0 | |
BD Difco LB Broth | Fisher Scientific | DF0446-17-3 | |
Calcium Chloride | Fisher Scientific | BP510-500 | |
Cholesterol | Fisher Scientific | ICN10138201 | |
Magnesium Sulfate | Fisher Scientific | BP213-1 | |
Nystatin | Acros organics | AC455500050 | |
Potassium Phosphate Dibasic | Fisher Scientific | BP363-500 | |
Potassium pPhosphate Monobasic | Fisher Scientific | BP362-500 | |
R-Fendiline | Commercially Synthesized (Pharmaceutical grade) | ||
Sodium Azide | Millipore Sigma | S2002-25G | |
Sodium chloride | Fisher Scientific | BP358-1 | |
Sodium Hydroxide | Fisher Scientific | SS266-1 | |
8.25% Sodium Hypochlorite | Bleach | ||
Sodium Phosphate Dibasic | Fisher Scientific | BP332-500 | |
Streptomycin Sulfate | Fisher Scientific | BP910-50 | |
(−)-Tetramisole Hydrochloride | Millipore Sigma | L9756 | |
UO126 (MEK inhibitor) | Millipore Sigma | 19-147 | |
Consumables | |||
15mL Conical Sterile Polypropylene Centrifuge Tubes | Fisher Scientific | 12-565-269 | |
50mL Conical Sterile Polypropylene Centrifuge Tubes | Fisher Scientific | 12-565-271 | |
Disposable Polystyrene Serological Pipettes 10mL | Fisher Scientific | 07-200-574 | |
Disposable Polystyrene Serological Pipettes 25mL | Fisher Scientific | 07-200-575 | |
No. 1.5Â 18 mm X 18 mm Cover Slips | Fisher Scientific | 12-541A | |
Petri Dish with Clear Lid (60 x 15 mm) | Fisher Scientific | FB0875713A | |
Petri Dishes with Clear Lid (100X15mm) | Fisher Scientific | FB0875712 | |
Plain Glass Microscope Slides (75 x 25 mm) | Fisher Scientific | 12-544-4 | |
12- Well Tissue Culture Plates | Fisher Scientific | 50-197-4804 | |
Software | |||
Prism | Graphpad | ||
Bacterial Strains | |||
E. coli OP50 | |||
Worm Strains | |||
Strain | Genotype | Transgene | Source |
MT2124 Â | let-60(n1046) IV. | CGC | |
MT7567 | lin-1(sy254) IV. | CGC | |
PS1839 | let-23(sa62) II. | CGC |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved