Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes an efficient cell-free method for production of high-quality proteoliposome by bilayer-dialysis method using wheat cell-free system and liposomes. This method provides suitable means for functional analysis of membrane proteins, drug targets screening, and antibody development.

Abstract

Membrane proteins play essential roles in a variety of cellular processes and perform vital functions. Membrane proteins are medically important in drug discovery because they are the targets of more than half of all drugs. An obstacle to conducting biochemical, biophysical, and structural studies of membrane proteins as well as antibody development has been the difficulty in producing large amounts of high-quality membrane protein with correct conformation and activity. Here we describe a “bilayer-dialysis method” using a wheat germ cell-free system, liposomes, and dialysis cups to efficiently synthesize membrane proteins and prepare purified proteoliposomes in a short time with a high success rate. Membrane proteins can be produced as much as in several milligrams, such as GPCRs, ion channels, transporters, and tetraspanins. This cell-free method contributes to reducing the time, cost and effort for preparing high-quality proteoliposomes, and provides suitable means for functional analysis of membrane proteins, drug targets screening, and antibody development.

Introduction

Membrane proteins are one of the most important drug targets in diagnosis and therapeutics. Indeed, half of small compound drugs target are membrane proteins, such as G-protein-coupled receptors (GPCRs) and ion channels1. Over the years, researchers have been working on biochemical, biophysical, and structural studies of membrane proteins to elucidate their structure and function2,3. Development of monoclonal antibodies against membrane proteins is also performed actively in order to accelerate functional and structural studies and to develop therapeutic and diagnostic applications

Protocol

1. Preparation of pEU expression plasmid

NOTE: pEU expression plasmid should include start codon, open reading frame of target membrane protein, and stop codon in the fragment (see Figure 1). Add detection/purification tag sequence(s) at the appropriate position when required. Either restriction enzyme digestion or seamless cloning is applicable for subcloning. Here we describe a protocol using a seamless cloning method.

  1. Prepare insert DNA fragment. <.......

Representative Results

Using this protocol, partially purified proteoliposomes can be obtained in a short time. Representative results are shown in Figure 2A. Twenty five GPCRs of Class A, B, and C were successfully synthesized using the bilayer-dialysis method (small scale) and partially purified by centrifugation and buffer wash. Although the amount of synthesized proteins varies according to the type of protein, 50 to 400 µg of membrane proteins usually can be synthesized per reaction when large dialysis c.......

Discussion

The presented protocol provides a method of producing membrane proteins at a high success rate. This protocol is simple, highly reproducible, and easy to scale up. It also has the potential to reduce the time and cost of experiments that consume a large amount of membrane proteins. The bilayer-dialysis method improves the productivity by 4–10 times compared with bilayer method or dialysis method (Figure 2B)45. In an extreme case, the yield of an ion channel and .......

Acknowledgements

This research was supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP20am0101077. This work was also partially supported by JSPS KAKENHI Grant Number 20K05709.

....

Materials

NameCompanyCatalog NumberComments
×3 SDS-PAGE sample bufferContaining 10% 2-mercaptoethanol
5-20% gradient SDS-PAGE gelATTOE-D520L
70% ethanolDiluted ethanol by ultrapure water.
AgaroseTakara Bio
Ammonium acetateNakalai tesque02406-95As this reagent is deliquescent, dissolve all of it in water once opened and store it at -30°C.
Ampicillin SodiumNakalai tesque02739-74
Asolectin Liposome, lyophilizedCellFree SciencesCFS-PLE-ASLA vial contains 10 mg of lyophilized liposomes.
BSA standard1000 ng, 500 ng, 250 ng, 125 ng BSA / 10 µL ×1 SDS-PAGE sample buffer
CBB gel stain
cDNA clone of interestPlasmid harboring cDNA clone or synthetic DNA fragment
ChloroformNakalai tesque08402-84
Cooled incubatorTemperature ranging from 0 to 40 °C or wider.
Creatine kinaseRoche Diagnostics04524977190
Dialysis cup (0.1 mL)Thermo Fisher Scientific69570Slide-A-Lyzer MINI Dialysis Device, 10K MWCO, 0.1 mL
Dialysis cup (2 mL)Thermo Fisher Scientific88404Slide-A-Lyzer MINI Dialysis Device, 10K MWCO, 2 mL
DNA ladder markerThermo Fisher ScientificSM0311GeneRuler 1 kb DNA Ladder
DpnIThermo Fisher ScientificFD1703FastDigest DpnI
E. coli strain JM109
Electrophoresis chamberATTO
Ethanol (99.5%)Nakalai tesque14713-95
Ethidium bromide
Evaporation flask, 100 mL
Gel imager
Gel scannerWe use document scanner and LED immuninator as a substitute.
LB broth
Lipids of interestAvanti Polar Lipids
Micro centrifugeTOMYMX-307
NTP mixCellFree SciencesCFS-TSC-NTPMixture of ATP, GTP, CTP, UTP, at 25 mM each
Nuclease-free 25 mL tubeIWAKI362-025-MYP
Nucrease-free plastic tubesWatson bio labsDo not autoclave. Use them separately from other experiments.
Nucrease-free tipsWatson bio labsDo not autoclave. Use them separately from other experiments.
PBS buffer
PCR purification kitMACHEREY-NAGEL740609NucleoSpin Gel and PCR Clean-up
pEU-E01-MCS vectorCellFree SciencesCFS-11
Phenol/chloroform/isoamyl alcohol (25:24:1)Nippon Gene311-90151
Plasmid prep Midi kitMACHEREY-NAGEL740410NucleoBond Xtra Midi
Primer 1Thermo Fisher ScientificCustom oligo synthesis5’-CCAAGATATCACTAGnnnnnnnnnnnnnnnnnnnnnnnn-3’
Gene specific primer, forward. Upper case shows overlap sequence to be added for seamless cloning. Lower case nnnn…. (20-30 bp) shows gene specific sequence.
Primer 2Thermo Fisher ScientificCustom oligo synthesis5'-CCATGGGACGTCGACnnnnnnnnnnnnnnnnnnnnnnnn-3’
Gene specific primer, reverse. Upper case shows overlap sequence to be added for seamless cloning. Lower case nnnn…. (20-30 bp) shows gene specific sequence.
Primer 3Thermo Fisher ScientificCustom oligo synthesis5'-GTCGACGTCCCATGGTTTTGTATAGAAT-3'
Forward primer for vector linearization. Underline works as overlap in seamless cloning.
Primer 4Thermo Fisher ScientificCustom oligo synthesis5'-CTAGTGATATCTTGGTGATGTAGATAGGTG-3'
Reverse primer for vector linearization. Underline works as overlap in seamless cloning.
Primer 5Thermo Fisher ScientificCustom oligo synthesis5’-CAGTAAGCCAGATGCTACAC-3’
Sequencing primer, forward
Primer 6Thermo Fisher ScientificCustom oligo synthesis5’- CCTGCGCTGGGAAGATAAAC-3’
Sequencing primer, reverse
Protein size markerBio-Rad1610394Precision Plus Protein Standard
Rotary evaporator
seamless cloning enzyme mixtureNew England BioLabsE2611LGibson Assembly Master Mix
Other seamless cloning reagents are also avairable.
SP6 RNA Polymerase & RNase InhibitorCellFree SciencesCFS-TSC-ENZ
Submarine Electrophoresis system
TAE buffer
Transcription Buffer LMCellFree SciencesCFS-TSC-5TB-LM
Translation bufferCellFree SciencesCFS-SUB-SGCSUB-AMIX SGC (×40) stock solution (S1, S2, S3, S4).
Prepare ×1 translation buffer before use by mixing stock S1, S2, S3, S4 stock and ultrapure water.
Ultrapure waterWe recommend to prepare ultrapure water by using ultrapure water production system every time you do experiment. Do not autoclave.
We preparaed ultrapure water by using Milli-Q Reference and Elix10 system.
Commercially available nuclease-free water (not DEPC-treated water) can be used as a substitute. Take care of contamination after open the bottle.
Ultrasonic homogenizerBransonSONIFIER model 450D-AdvancedUltrasonic cleaner can be used as a substitute.
UV transilluminator
Vacuum desiccator
Wheat germ extractCellFree SciencesCFS-WGE-7240WEPRO7240

References

  1. Santos, R., et al. A comprehensive map of molecular drug targets. Nature Reviews. Drug Discovery. 16 (1), 19-34 (2017).
  2. Gusach, A., et al. Beyond structure: emerging approaches to study GPCR dynamics. Current Op....

Explore More Articles

Cell free ProductionProteoliposomesMembrane ProteinsDrug DiscoveryIn vitro Protein SynthesisLiposome PreparationWheat Germ ExtractTranscriptionTranslationCell free Expression

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved