A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol to use a curvelet transform-based, open-source MATLAB software tool for quantifying fibrillar collagen organization in the extracellular matrix of both normal and diseased tissues. This tool can be applied to images with collagen fibers or other types of line-like structures.
Fibrillar collagens are prominent extracellular matrix (ECM) components, and their topology changes have been shown to be associated with the progression of a wide range of diseases including breast, ovarian, kidney, and pancreatic cancers. Freely available fiber quantification software tools are mainly focused on the calculation of fiber alignment or orientation, and they are subject to limitations such as the requirement of manual steps, inaccuracy in detection of the fiber edge in noisy background, or lack of localized feature characterization. The collagen fiber quantitation tool described in this protocol is characterized by using an optimal multiscale image representation enabled by curvelet transform (CT). This algorithmic approach allows for the removal of noise from fibrillar collagen images and the enhancement of fiber edges to provide location and orientation information directly from a fiber, rather than using the indirect pixel-wise or window-wise information obtained from other tools. This CT-based framework contains two separate, but linked, packages named “CT-FIRE” and “CurveAlign” that can quantify fiber organization on a global, region of interest (ROI), or individual fiber basis. This quantification framework has been developed for more than ten years and has now evolved into a comprehensive and user-driven collagen quantification platform. Using this platform, one can measure up to about thirty fiber features including individual fiber properties such as length, angle, width, and straightness, as well as bulk measurements such as density and alignment. Additionally, the user can measure fiber angle relative to manually or automatically segmented boundaries. This platform also provides several additional modules including ones for ROI analysis, automatic boundary creation, and post-processing. Using this platform does not require prior experience of programming or image processing, and it can handle large datasets including hundreds or thousands of images, enabling efficient quantification of collagen fiber organization for biological or biomedical applications.
Fibrillar collagens are prominent, structural ECM components. Their organization changes impact tissue function and are likely associated with the progression of many diseases ranging from osteogenesis imperfecta1, cardiac dysfunction2, and wound healing3 to different types of cancer including breast4,5,6, ovarian7,8, kidney9, and pancreatic cancers10. Many established imaging modalities can be used ....
NOTE: This protocol describes the use of CT-FIRE and CurveAlign for collagen quantification. These two tools have complementary, but different, main goals and are linked together to some extent. CT-FIRE can be launched from the CurveAlign interface to conduct most operations except for advanced post-processing and ROI analysis. For a full operation of CT-FIRE, it should be launched separately.
1. Image collection and image requirement
NOTE: The tool can process any image file with line-like structures readable by MATLAB regardless of the imaging modality used to collect it.
These methods have been successfully applied in numerous studies. Some typical applications include: 1) Conklin et al.22 used CurveAlign to calculate tumor-associated collagen signatures, and found that collagen fibers were more frequently aligned perpendicularly to the duct perimeter in ductal carcinoma in situ (DCIS) lesions; 2) Drifka et al.10 used the CT-FIRE mode in CurveAlign to quantify the stromal collagen alignment for pancreatic ductal adenocarcinoma and normal/ch.......
This protocol describes the use of CT-FIRE and CurveAlign for fibrillar collagen quantification and can be applied to any image with collagen fibers or other line-like or fiber-like elongated structures suitable for analysis by CT-FIRE or CurveAlign. For example, elastin or elastic fibers could be processed in a similar way on this platform. We have tested both tools on computationally generated synthetic fibers21. Depending on the application, users should choose the analysis mode that is most ap.......
The authors have nothing to disclose.
We thank many contributors and users to CT-FIRE and CurveAlign over the years, including Dr. Rob Nowak, Dr. Carolyn Pehlke, Dr. Jeremy Bredfeldt, Guneet Mehta, Andrew Leicht, Dr. Adib Keikhosravi, Dr. Matt Conklin, Dr. Jayne Squirrell, Dr. Paolo Provenzano, Dr. Brenda Ogle, Dr. Patricia Keely, Dr. Joseph Szulczewski, Dr. Suzanne Ponik and additional technical contributions from Swati Anand and Curtis Rueden. This work was supported by funding from Semiconductor Research Corporation, Morgridge Institute for Research, and NIH grants R01CA199996, R01CA181385 and U54CA210190 to K.W.E.
....Name | Company | Catalog Number | Comments |
CT-FIRE | Univerity of Wisconsin-Madison | N/A | open source software available from https://eliceirilab.org/software/ctfire/ |
CurveAlign | University of Wisconsin-Madison | N/A | open source software available from https://eliceirilab.org/software/curvealign/ |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved