A subscription to JoVE is required to view this content. Sign in or start your free trial.
Reliably controlling light-responsive mammalian cells requires the standardization of optogenetic methods. Toward this goal, this study outlines a pipeline of gene circuit construction, cell engineering, optogenetic equipment operation, and verification assays to standardize the study of light-induced gene expression using a negative-feedback optogenetic gene circuit as a case study.
Reliable gene expression control in mammalian cells requires tools with high fold change, low noise, and determined input-to-output transfer functions, regardless of the method used. Toward this goal, optogenetic gene expression systems have gained much attention over the past decade for spatiotemporal control of protein levels in mammalian cells. However, most existing circuits controlling light-induced gene expression vary in architecture, are expressed from plasmids, and utilize variable optogenetic equipment, creating a need to explore characterization and standardization of optogenetic components in stable cell lines. Here, the study provides an experimental pipeline of reliable gene circuit construction, integration, and characterization for controlling light-inducible gene expression in mammalian cells, using a negative feedback optogenetic circuit as a case example. The protocols also illustrate how standardizing optogenetic equipment and light regimes can reliably reveal gene circuit features such as gene expression noise and protein expression magnitude. Lastly, this paper may be of use for laboratories unfamiliar with optogenetics who wish to adopt such technology. The pipeline described here should apply for other optogenetic circuits in mammalian cells, allowing for more reliable, detailed characterization and control of gene expression at the transcriptional, proteomic, and ultimately phenotypic level in mammalian cells.
Similar to other engineering disciplines, synthetic biology aims to standardize protocols, allowing tools with highly reproducible functions to be utilized for exploring questions relevant to biological systems1,2. One domain in synthetic biology where many control systems have been built is the area of gene expression regulation3,4. Gene expression control can target both protein levels and variability (noise or coefficient of variation, CV = σ/µ, measured as the standard deviation over the mean), which are crucial cellular characteristics d....
1. Gene circuit design
Gene circuit assembly and stable cell line generation within this article were based on commercial, modified HEK-293 cells containing a transcriptionally active, single stable FRT site (Figure 1). The gene circuits were constructed into vectors that had FRT sites within the plasmid, allowing for the Flp-FRT integration into the HEK-293 cell genome. This approach is not limited to Flp-In cells, as FRT sites can be added to any cell line of interest anywhere in the genome using DNA editing tec.......
Readers of this article can gain insight into the steps vital for characterizing optogenetic gene circuits (as well as other gene expression systems), including 1) gene circuit design, construction, and validation; 2) cell engineering for introducing gene circuits into stable cell lines (e.g., Flp-FRT recombination); 3) induction of the engineered cells with a light-based platform such as the LPA; 4) initial characterization of light induction assays via fluorescence microscopy; and 5) final gene expression characterizat.......
We would like to thank Balázsi lab for comments and suggestions, Dr. Karl P. Gerhardt and Dr. Jeffrey J. Tabor for helping us construct the first LPA, and Dr. Wilfried Weber for sharing the LOV2-degron plasmids. This work was supported by the National Institutes of Health [R35 GM122561 and T32 GM008444]; The Laufer Center for Physical and Quantitative Biology; and a National Defense Science and Engineering Graduate (NDSEG) Fellowship. Funding for open access charge: NIH [R35 GM122561].
Author contributions: M.T.G. and G.B. conceived the project. M.T.G., D.C., and L.G., performed the experiments. M.T.G., D.C., L.G., and G.B. analyzed th....
Name | Company | Catalog Number | Comments |
0.2 mL PCR tubes | Eppendorf | 951010006 | reagent for carrying out PCR |
0.25% Trypsin EDTA 1X | Thermo Fisher Scientific | MT25053CI | reagent for splitting & harvesting mammalian cells |
0.5-10 μL Adjustable Volume Pipette | Eppendorf | 3123000020 | tool used for pipetting reactions |
100-1000 μL Adjustable Volume Pipette | Eppendorf | 3123000039 | tool used for pipetting reactions |
20-200 μL Adjustable Volume Pipette | Eppendorf | 3123000055 | tool used for pipetting reactions |
2-20 μL Adjustable Volume Pipette | Eppendorf | 3123000039 | tool used for pipetting reactions |
5 mL Polystyene Round-Bottom Tube w/ Cell Strainer Cap | Corning | 352235 | reagent for flow cytometry |
5702R Centrifuge, with 4 x 100 Rotor, 15 and 50 mL Adapters, 120 V | Eppendorf | 22628113 | equipment for mammalian culture work |
Agarose | Denville Scientific | GR140-500 | reagent for gel electrophoresis |
Aluminum Foils for 96-well Plates | VWR® | 60941-126 | tool used for covering plates in light-induction experiments |
Ampicillin | Sigma Aldrich | A9518-5G | reagent for selecting bacteria with correct plasmid |
Analog vortex mixer | Thermo Fisher Scientific | 02215365PR | tool for carrying PCR, transformation, or gel extraction reactions |
Bacto Dehydrated Agar | Fisher Scientific | DF0140010 | reagent for growing bacteria |
BD LSRAria | BD | 656700 | tool for sorting engineered cell lines into monoclonal populations |
BD LSRFortessa | BD | 649225 | tool for characterizing engineered cell lines |
BSA, Bovine Serum Albumine | Government Scientific Source | SIGA4919-1G | reagent for IF incubation buffer |
Cell Culture Plate 12-well, Clear, flat-bottom w/lid, polystyrene, non-pyrogenic, standard-TC | Corning | 353043 | plate used for growing monoclonal cells |
Centrifuge | VWR | 22628113 | instrument for mammalian cell culture |
Chemical fume hood | N/A | N/A | instrument for carrying out IF reactions |
Clear Cell Culture Plate 24 well flat-bottom w/ lid | BD | 353047 | plate used for growing monoclonal cells |
CytoOne T25 filter cap TC flask | USA Scientific | CC7682-4825 | container for growing mammalian cells |
Dimethyl sulfoxide (DMSO) | Fischer Scientific | BP231-100 | reagent used for freezing down engineered mammalian cells |
Ethidium Bromide | Thermo Fisher Scientific | 15-585-011 | reagent for gel electrophoresis |
Falcon 96 Well Clear Flat Bottom TC-Treated Culture Microplate, with Lid | Corning | 353072 | container for growing sorted monoclonal cells |
FCS Express | De Novo Software: | N/A | software for characterizing flow cytometry data |
Fetal Bovine Serum, Regular, USDA 500 mL | Corning | 35-010-CV | reagent for growing mammalian cells |
Fisherbrand Petri Dishes with Clear Lid - Raised ridge; 100 x 15 mm | Fisher Scientific | FB0875712 | equipment for growing bacteria |
Gibco DMEM, High Glucose | Thermo Fisher Scientific | 11-965-092 | reagent for growing mammalian cells |
Hs00932330_m1 KRAS isoform a Taqman Gene Expression Assay | Life Technologies | 4331182 | qPCR Probe |
Hygromycin B (50 mg/mL), 20 mL | Life Technologies | 10687-010 | reagent for selecting cells with proper gene circuit integration |
iScript Reverse Transcription Supermix | Bio-Rad Laboratories | 1708890 | reagent for converting RNA to cDNA |
Laboratory Freezer -20 °C | VWR | 76210-392 | equipment for storing experimental reagents |
Laboratory Freezer -80 °C | Panasonic | MDF-U74VC | equipment for storing experimental reagents |
Laboratory Refrigerator +4 °C | VWR | 76359-220 | equipment for storing experimental reagents |
LB Broth (Lennox) , 1 kg | Sigma-Aldrich | L3022-250G | reagent for growing bacteria |
LIPOFECTAMINE 3000 | Life Technologies | L3000008 | reagemt for transfecting gene circuits into mammalian cells |
MATLAB 2019 | MathWorks | N/A | software for analyzing experimental data |
Methanol | Acros Organics | 413775000 | reagent for immunofluorescence reaction |
Microcentrifuge Tubes, Polypropylene 1.7 mL | VWR | 20170-333 | plasticware container |
Mr04097229_mr EGFP/YFP Taqman Gene Expression Assay | Life Technologies | 4331182 | qPCR Probe |
MultiTherm Shaker | Benchmark Scientific | H5000-HC | equipment for bacterial transformation |
NanoDrop Lite Spectrophotometer | Thermo Fisher Scientific | ND-NDL-US-CAN | equipment for DNA/RNA concentration measurement |
NEB Q5 High-Fidelity DNA polymerase 2x Master Mix | NEB | M0492S | reagent for PCR of gene circuit fragments |
NEB10-beta Competent E. coli (High Efficiency) | New England Biolabs (NEB) | C3019H | bacterial cells for amplifying gene circuit of interest |
NEBuilder HiFi DNA Assembly Master Mix | New England Biolabs (NEB) | E2621L | reagent for combining gene circuit fragements |
Nikon Eclipse Ti-E inverted microscope with a DS-Qi2 camera | Nikon Instruments Inc. | N/A | instrument for quantifying gene expression |
NIS-Elements | Nikon Instruments Inc. | N/A | software for characterizing fluorescence microscopy data |
oligonucleotides | IDT | N/A | reagent used for PCR of gene circuit components |
Panasonic MCO-170 AICUVHL-PA cellIQ Series CO2 Incubator with UV and H2O2 Control | Panasonic | MCO-170AICUVHL-PA | instrument for growing mammalian cells |
Paraformaldehyde, 16% Electron Microscopy Grade | Electron Microscopy Sciences | 15710-S | reagent |
PBS, Dulbecco's Phosphate-Buffered Saline (D-PBS) (1x) | Invitrogen | 14190144 | reagent for mammalian cell culture,reagent for IF incubation buffer |
Penicillin-Streptomycin (10,000 U/mL), 100x | Fisher Scientific | 15140-122 | reagent for growing mammalian cells |
primary ERK antibody | Cell Signaling Technology | 4370S | primary ERK antibody for immunifluorescence |
primary KRAS antibody | Sigma-Aldrich | WH0003845M1 | primary KRAS antibody for immunifluorescence |
QIAprep Spin Miniprep Kit (250) | Qiagen | 27106 | reagent kit for purifying gene circuit plasmids |
QIAquick Gel Extraction Kit (50) | Qiagen | 28704 | reagent kit for purifying gene circuit fragments |
QuantStudio 3 Real-Time PCR System | Eppendorf | A28137 | equipment for qRT-PCR |
Relative Quantification App | Thermo Fisher Scientific | N/A | software for quantifying RNA/cDNA amplificaiton |
RNeasy Plus Mini Kit | Qiagen | 74134 | kit for extracting RNA of engineered mammalian cells |
Secondary ERK antibody | Cell Signaling Technology | 8889S | secondary ERK antibody for immunifluorescence |
secondary KRAS antibody | Invitrogen | A11005 | secondary KRAS antibody for immunifluorescence |
Serological Pipets 5.0 mL | Olympus Plastics | 12-102 | reagents used for setting up a variety of chemical reactions |
SmartView Pro Imager System | Major Science | UVCI-1200 | tool for imaging correct PCR bands |
SnapGene Viewer (free) or SnapGene | SnapGene | N/A | software DNA sequence design and analysis |
Stage top incubator | Tokai Hit | INU-TIZ | tool for carrying PCR, transformation, or gel extraction reactions |
TaqMan Fast Advanced Master Mix | Thermo Fisher Scientific | 4444557 | reagent for PCR of gene circuit fragments |
TaqMan Human GAPD (GAPDH) Endogenous Control (VIC/MGB probe), primer limited, 2500 rxn | Life Technologies | 4326317E | qPCR Probe |
Thermocycler | Bio-Rad | 1851148 | tool for carrying PCR, transformation, or gel extraction reactions |
VisiPlate-24 Black, Black 24-well Microplate with Clear Bottom, Sterile and Tissue Culture Treated | PerkinElmer | 1450-605 | plate used for light-induction experiments |
VWR Disposable Pasteur Pipets, Glass, Borosilicate Glass Pipet, Short Tip, Capacity=2 mL, Overall Length=14.6 cm | VWR | 14673-010 | reagent for mammalian cell culture |
VWR Mini Horizontal Electrophoresis Systems, Mini10 Gel System | VWR | 89032-290 | equipment for DNA gel electrophoresis |
Flp-In 293 | Thermo Fisher Scientific | R75007 | Engineered cell line with FRT site |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved