A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, a protocol is presented for the metabolic labeling of yeast with 14C-acetic acid, which is coupled with thin layer chromatography for the separation of neutral lipids.
Neutral lipids (NLs) are a class of hydrophobic, chargeless biomolecules that play key roles in energy and lipid homeostasis. NLs are synthesized de novo from acetyl-CoA and are primarily present in eukaryotes in the form of triglycerides (TGs) and sterol-esters (SEs). The enzymes responsible for the synthesis of NLs are highly conserved from Saccharomyces cerevisiae (yeast) to humans, making yeast a useful model organism to dissect the function and regulation of NL metabolism enzymes. While much is known about how acetyl-CoA is converted into a diverse set of NL species, mechanisms for regulating NL metabolism enzymes, and how mis-regulation can contribute to cellular pathologies, are still being discovered. Numerous methods for the isolation and characterization of NL species have been developed and used over decades of research; however, a quantitative and simple protocol for the comprehensive characterization of major NL species has not been discussed. Here, a simple and adaptable method to quantify the de novo synthesis of major NL species in yeast is presented. We apply 14C-acetic acid metabolic labeling coupled with thin layer chromatography to separate and quantify a diverse range of physiologically important NLs. Additionally, this method can be easily applied to study in vivo reaction rates of NL enzymes or degradation of NL species over time.
Acetyl-CoA is the fundamental building block of diverse biomolecules including neutral lipids (NLs), which serve as a versatile biomolecular currency for building membranes, generating ATP, and regulating cell signaling1,2. The availability of NLs to be shunted into any of these respective pathways is, in part, regulated by their storage. Lipid droplets (LDs), cytoplasmic organelles composed of hydrophobic cores of triglycerides (TGs) and sterol-esters (SEs), are the main storage compartments of most cellular NLs. As such, LDs sequester and regulate NLs, which can be degraded and subsequently utilized for biochemical and metabolic processes3,4. It is known that the mis-regulation of NL and LD-associated proteins is correlated with the onset of pathologies including lipodystrophy and metabolic syndromes5,6. Because of this, current LD research is intensely focused on how NL synthesis is regulated spatially, temporally, and across distinct tissues of multi-cellular organisms. Due to the ubiquitous cellular roles for NLs, many enzymes responsible for the synthesis and regulation of NLs are conserved throughout eukaryotes7. Indeed, even some prokaryotes store NLs in LDs8. Therefore, genetically tractable model organisms such as Saccharomyces cerevisiae (budding yeast) have been useful for the study of NL synthesis and regulation.
The separation and quantification of NLs from cell extracts can be accomplished in a myriad of ways, including gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)9,10,11. Perhaps the simplest method for separating NLs is via thin layer chromatography (TLC), which allows for subsequent densitometric quantification from a standard curve12,13. Although TLC provides only a course-grained separation of NLs, it remains a powerful technique because it is inexpensive, and it allows for the rapid separation of NLs from several samples simultaneously. Two of the most considerable challenges facing the study of NLs via TLC are: 1) the broad range of cellular abundances of NL species and their intermediates, and 2) the range of hydrophilicity/hydrophobicity of lipid intermediates within NL synthesis pathways. Consequently, the quantification of NL species via TLC is typically restricted to the most abundant species; however, introduction of a 14C-acetic acid radiolabel can significantly enhance the detection of low abundance intermediates within NL pathways. Acetic acid is rapidly converted into acetyl-CoA by the acetyl-CoA synthetase ACS214, which makes 14C-acetic acid a suitable radiolabeling substrate in yeast15. Additionally, separation of both hydrophobic NLs and hydrophilic intermediates of NLs can be achieved by TLC through the use of multiple solvent systems16. Here, a method is presented for the separation of NLs using 14C-acetic acid metabolic labeling in yeast. Lipids labeled during the pulse period are subsequently isolated by a well-established total lipid isolation protocol17, followed by the separation of NL species by TLC. Developing of TLC plates by both autoradiography to visualize labeled lipids, and a chemical spray to visualize total lipids, permits for multiple methods of quantification. Individual lipid bands can also be easily extracted from the TLC plate using a razor blade, and scintillation counting can be used to quantify amount of radiolabeled material within the band.
Access restricted. Please log in or start a trial to view this content.
1. Growth and labeling of yeast cells with 14C-acetic acid
2. Isolation of total lipids from yeast
NOTE: The following protocol for lipid isolation is based on a well-established and frequently used method that efficiently extracts most neutral lipid species17,18.
CAUTION: When using organic solvent, always wear appropriate PPE and work inside of a fume hood when possible. During lipid extraction, avoid using plastics that are incompatible with organic solvents. Polypropylene tubes are suitable for the following protocol.
3. Separation and quantification of radioisotope-labeled NLs by thin layer chromatography
4. Visualization and quantification of TLC separated lipids
Access restricted. Please log in or start a trial to view this content.
In this protocol, we have demonstrated that the labeling, detection, and quantification of NL species can be accomplished by 14C-acetic acid metabolic labeling. Major NL species can be separated in a solvent system of 50:40:10:1 (v/v/v/v%) Hexane:Petroleum ether:Diethyl ether:Acetic acid (Figure 1A,B). Phosphor imaging allows for visualization of labeled free fatty acid (FFA), triacylglycerol (TG), diacylglycerol (DG), cholesterol (Chol), and squalene (SQ) (
Access restricted. Please log in or start a trial to view this content.
Here, a versatile radiolabeling protocol to quantitatively monitor the synthesis of NL species in yeast is presented. This protocol is very modular, which allows for the procedure to be finished within 3-6 days. Additionally, a wealth of literature exists on the use of TLC to separate lipid species and metabolites, which should permit the user to detect several lipid species of interest with a simple change of TLC solvent systems16,19.This protocol is conducive t...
Access restricted. Please log in or start a trial to view this content.
The authors declare there are no competing interests in the preparation of this manuscript.
The authors would like to thank the members of the Henne lab for help and conceptual advice in the completion of this study. W.M.H. is supported by funds from the Welch Foundation (I-1873), the NIH NIGMS (GM119768), the Ara Paresghian Medical Research Fund, and the UT Southwestern Endowed Scholars Program. S.R has been supported by a T32 program grant (5T32GM008297).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
[1-C14] Acetic acid sodium salt specific activity: 45-60mCi | PerkinElmer | NEC084H001MC | |
18:1 1,2 dioleoyl-sn-glycerol | Avanti | 800811O | |
200 proof absolute ethanol | Sigma | 459836 | |
Acid washed glass beads 425-600um | Sigma | G8772 | |
Amber bulbs for Pastuer pipettes | Fisher | 03-448-24 | |
Ammonium Sulfate >99% | Sigma | A4418 | |
Beckman LS6500 scintillation counter | PerkinElmer | A481000 | |
Chloroform (HPLC grade) | Fisher | C607SK | |
Cholesterol >99% | Sigma | C8667 | |
Cholesteryl-linoleate >98% | Sigma | C0289 | |
Concentrated sulfuric acid | Sigma | 339741 | |
Corning 50mL conical tubes, polypropylene with centristar cap | Sigma | CLS430829 | |
Dextrose, anhydrous grade | Sigma | D9434 | |
Diethyl ether anhydrous grade | Sigma | 296082 | |
Drying oven | Fisher | 11-475-155 | |
EcoLume scintillation liquid | VWR | IC88247001 | |
Eppendorf 5424R centrifuge | Fisher | 05-401-205 | |
GE Storage phosphor screen | Sigma | GE28-9564-75 | |
GE Typhoon FLA9500 imager | |||
Glacial acetic acid, ACS grade | Sigma | 695092 | |
Glass 6mL scintillation vials | Sigma | M1901 | |
Glass centrifuge tube caps | Fisher | 14-595-36A | |
Glass centrifuge tubes | Fisher | 14-595-35A | |
Glass Pasteur pipette | Fisher | 13-678-20C | |
Hexane, anhydrous grade | Sigma | 296090 | |
L-Adenine >99% | Sigma | A8626 | |
L-Alanine >98% | Sigma | A7627 | |
L-Arginine >99% | Sigma | A1270000 | |
L-Asparagine >98% | Sigma | A0884 | |
L-Aspartate >98% | Sigma | A9256 | |
L-Cysteine >97% | Sigma | W326305 | |
L-Glutamic acid monosodium salt monohydrate >98% | Sigma | 49621 | |
L-Glutamine >99% | Sigma | G3126 | |
L-Glycine >99% | Sigma | G8898 | |
L-Histidine >99% | Sigma | H8000 | |
L-Isoleucine >98% | Sigma | I2752 | |
L-Leucine >98% | Sigma | L8000 | |
L-Lysine >98% | Sigma | L5501 | |
L-Methionine, HPLC grade | Sigma | M9625 | |
L-Phenylalanine, reagent grade | Sigma | P2126 | |
L-Proline >99% | Sigma | P0380 | |
L-Serine >99% | Sigma | S4500 | |
L-Theronine, reagent grade | Sigma | T8625 | |
L-Tryptophan >98% | Sigma | T0254 | |
L-Tyrosine >98% | Sigma | T3754 | |
L-Uracil >99% | Sigma | U0750 | |
L-Valine >98% | Sigma | V0500 | |
Methanol, ACS grade | Fisher | A412 | |
Oleic acid >99% | Sigma | O1008 | |
p-anisaldehyde | Sigma | A88107 | |
Petroleum ether, ACS grade | Sigma | 184519 | |
Phosphatidylcholine, dipalmitoyl >99% | Sigma | P1652 | |
Pipettes | Eppendorf | 2231000713 | |
Potassium chloride, ACS grade | Sigma | P3911 | |
Sodium Hydroxide pellets, certified ACS | Fisher | S318-100 | |
Squalene >98% | Sigma | S3626 | |
Succinic Acid crystalline/certified | Fisher | 110-15-6 | |
TLC saturation pad | Sigma | Z265225 | |
TLC silica gel 60G glass channeled plate | Fisher | NC9825743 | No fluorescent indicators |
Transparency plastic film | Apollo | 829903 | |
Tricine | Sigma | T0377 | |
Triolein >99% | Sigma | T7140 | |
Vortex mixer | Fisher | 02-215-414 | |
Whatman exposure cassette | Sigma | WHA29175523 | |
Yeast nitrogen base without ammonium sulfate and amino acids | Sigma | Y1251 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved