A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
RBDT integrates behavioral patterns based on discrete responses (e.g., stimuli selection, placement of figures) and continuous responses (e.g., tracking of cursor movements, figure dragging) to study relational behavior with humans. RBDT is a challenging task based on transposition, in which the participant sets up stimuli compounds with a relational criterion (more/less than).
The most extensively employed paradigm for the analysis of relational behavior is the transposition task. Nevertheless, it has two important limitations for its use in humans. The first one is the "ceiling effect" reported in linguistic participants. The second limitation is that the standard transposition task, being a simple choice task between two stimuli, does not include active behavioral patterns and their recording, as relevant factors in emergence of relational behavior. In the present work, a challenging multi-object task based on transposition, integrated with recording software, is presented. This paradigm requires behavioral active patterns to form stimuli compounds with a given relational criteria. The paradigm is composed of three arrangements: a) a bank of stimuli, b) sample relational compounds, and c) comparison relational compounds. The task consists of the participant constructing two comparison relational compounds by dragging figures of a bank of stimuli with the same relation shown by the sample relational compounds. These factors conform an integrated system that can be manipulated in an individual or integrative manner. The software records discrete responses (e.g., stimuli selections, placements) and continuous responses (e.g., tracking of cursor movements, figure dragging). The obtained data, data analysis and graphical representations proposed are compatible with frameworks that assume an active nature of the attentional and perceptual processes and an integrated and continuous system between the perceiver and the environment. The proposed paradigm deepens the systematic study of relational behavior in humans in the framework of the transposition paradigm and expands it to a continuous analysis of interaction between active patterns and the dynamics of relational behavior.
The ability to recognize and respond based on the relational qualities of objects regardless of absolute attributes that each one possesses is named relational behavior. From an ecological view, relational behavior could be critical to the adjustment of the organisms, humans and not humans, to complex and dynamic natural environments. In social and ecological contexts, the organisms are constrained to respond to permutable aspects of the environment (e.g., food, predators) that vary in relation to given qualities (e.g., size, color, smell, the intensity of a given sound, etc.) of the objects, events, and other organisms. One of the most exciting and controversial issues in the history of behavioral science is the emergence of relational behavior. This is, do animals (non-humans and humans) perceive and respond to relational qualities of stimuli, regardless of the absolute attributes that each one possess?1,2,3,4,5. The affirmative answer implies that organisms' responses integrates segments of stimulation that vary in degree in, at least, one relevant dimension or quality, such as the size or saturation of the stimuli6,7. In spite of the cited controversy, there is strong evidence that supports the emergence of relational behavior in animals4,8,9,10 and humans11,12,13,14,15,16,17,18.
Different paradigms have been used for the analysis of relational behavior. The most extensively employed has been the transposition task5,8. In the transposition task, the participant responds to a given stimulus in such a way that its relevant property (e.g., 'shorter than') is relative to the property of other stimuli in the context of a composed gradient of multiple values (at least three) in a given dimension (e.g., size). Different specific values of the stimuli can take different relational values within the gradient; this is, the specific value of each stimulus can permute its relational values in a given dimension. In simple words, the same stimuli could be 'shorter than' or 'bigger than' depending on comparison stimuli within a size gradient. Some of the reasons of why the transposition task has been a central paradigm for the study of relational behavior are the following: a) the paradigm is susceptible to be extended to different stimuli dimensions2,19,20,21,22,23,24,25; b) by consequence, it is useful for the study of relational behavior in different species (e.g., chickens, pigeons, chimpanzee, turtles, horses, humans)2,4,10,11,18,26; c) it clearly shows changes of the relational value of the stimuli9; d) the task allows parametrical variations of different relevant factors involved in relational behaviour9 and; e) the task allows to conduct comparative studies between different stimuli dimensions and different species or organisms27,28,29,30.
The study of relational behavior in animals is more extensive, systematic and has stronger evidence than in humans. The main reason of this is the 'ceiling effect' frequently observed when the participants are humans11. In this context, recently challenging tasks have been proposed based on transposition for the study of relational behavior in this population6,7,11. In this way, the present work advances from the previous ones and presents a paradigm based on a modified-transposition task for the continuous analysis of relational behavior in humans.
Relational behavior under the transposition paradigm has been usually studied in simple choice situations, with only two stimulus options, and a reduced number of values along a single stimulus dimension in which participants are not allowed to display active patterns with respect to stimuli (e.g., inspecting, dragging, moving, and placing figures). Nevertheless, the experimental analysis of relational behavior might include situations with a) a greater number of stimulus values that allows to permutate or change the relational value of the stimuli; b) more than one relevant stimulus dimension and c) active behavioral patterns requirements, beyond the usually discrete dichotomous selections of the participants. These modifications would allow to evaluate factors not previously considered, mainly, the role of active patterns (e.g., inspecting, dragging, moving and placing figures) in relational behavior, and might prevent the "ceiling effect" observed when linguistic humans solve the standard task11.
RBDT allows the integration of patterns based on discrete responses (e.g., stimuli selection, placement of figures) and continuous responses (e.g., tracking of cursor movements, figure dragging) to analyze the emergence of relational behavior. Two different relational compounds, comprising two stimulus each one, show the same relational properties. They are presented as a sample to compose two new stimulus segments, by means of the active patterns of the participant. The task requires the relational comparability of the stimulus segments. This involves that each one of the two constructed stimulus-segments can be compared to one another as equivalent in terms of their relational properties, but also with respect to the two-sample stimulus-segments. The relations are identified in terms of "greater than" or "less than" magnitude (i.e., size or saturation).
To exemplify some of the possibilities of the experimental arrangements allowed by the presented paradigm, two experiments were conducted. The first experiment shows an exploration of relational behavior under different relational criteria without restriction of active patterns of behavior. The second experiment contrasts the dynamics of relational behavior under restriction of behavioral patterns adding a continuous recording and analysis of dragging and inspection activity with the mouse cursor.
Both protocols follow university guidelines to conduct behavioral research with human participants. RBDT software and the user's manual can be downloaded from https://osf.io/7xscj/
1. Experiment 1: Relational behavior under different relational criteria without restriction of active patterns of behavior
NOTE: Five elementary school children, between 10 to 11 years-old, volunteered to participate in this study, with the informed consent of their parents and teachers.
Figure 1. Example of relevant and irrelevant figures used as stimulus objects (SOs) in each experiment. Please click here to view a larger version of this figure.
Figure 2. Screens showing a comparison trial in Experiment 1 and 2. In the upper left zone are located the sample relational compounds (SRC), in the bottom zone the boxes to complete de comparison relational compounds (CRC), and in the right section the bank of stimuli. Please click here to view a larger version of this figure.
Phase 1 | Phase 2 | Phase 3 | |||
S1 to S3 | Test 1 | S4 to S6 | Test 2 | S7 to S9 | Test 3 |
Similar stimulus objects | Different stimulus objects | Different stimulus objects in each CRC |
Table 1. Design of Experiment 1
Figure 3. Examples of screen of each relationship in the three phases of the Experiment 1. Please click here to view a larger version of this figure.
Figure 4. Examples of screen in ordering task in Experiment 1 and 2. In the upper zone are the empty spaces to order the figures shown in the lower zone. Please click here to view a larger version of this figure.
2. Dynamics of relational behavior under restriction of behavioral patterns
NOTE: Two sophomore students, 19 and 21 years old, respectively, participated. Students were awarded an extra point in one of their subjects, regardless of their scores obtained in the experiment.
Sub-Experiments | ||
P1 No restriction of placement sequences and excessive placements | Training | Test |
P2 Restriction of placements sequences and restriction of excessive placements |
Table 2. Design of Experiment 2
Figure 5. Example of screen of relationship criteria in the four sessions of the Experiment 2. Please click here to view a larger version of this figure.
EXPERIMENT 1:
The behavioral continuum of each participant was analyzed. Analysis included comparison of excessive placements and variety of placement sequences, latencies in seconds between placements, choice of permutable, non-permutable and irrelevant stimuli, and correct (correct trials regardless of the number of placements or use of corrective trials) and accurate trials (correct trials with four placements and without corrective trials).
In the ordering task, whic...
The proposed paradigm expands and deepens the systematic study of relational behavior in humans in the framework of the transposition paradigm. On the one hand, it allows the analysis of some factors and parameters previously studied in the area - e.g., stimulus modality2,5,10,23,26; difference or disparity between stimuli4,<...
The authors have nothing to disclose.
None.
Name | Company | Catalog Number | Comments |
Pentium Laptop Computer | - | - | Monitor must be a minimum of 14", and windows processor. |
Keyboard | - | - | - |
Optic Mouse | - | - | It is suggested to use a device other than the touchpad to be used as a mouse. |
RbDT | https://osf.io/7xscj/ |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved