JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Application of Ultrasound and Shear Wave Elastography Imaging in a Rat Model of NAFLD/NASH

Published: April 20th, 2021

DOI:

10.3791/62403

1Comparative Medicine, Pfizer Inc., 2Digital Medicine & Translational Imaging, Pfizer Inc., 3Internal Medicine Research Unit, Pfizer Inc., 4Drug Safety Research & Development, Pfizer Inc.
* These authors contributed equally

Nonalcoholic Steatohepatitis (NASH) is a condition within the spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD), which is characterized by liver fat accumulation (steatosis) and inflammation leading to fibrosis. Preclinical models closely recapitulating human NASH/NAFLD are essential in drug development. While liver biopsy is currently the gold standard for measuring NAFLD/NASH progression and diagnosis in the clinic, in the preclinical space, either collection of whole liver samples at multiple timepoints during a study or biopsy of liver is needed for histological analysis to assess the disease stage.

Conducting a liver biopsy mid-study is an invasive and labor-intensive procedure, and collecting liver samples to assess disease level increases the number of research animals needed for a study. Thus, there is a need for a reliable, translatable, non-invasive imaging biomarker to detect NASH/NAFLD in these preclinical models. Non-invasive ultrasound-based B-mode images and Shear Wave Elastography (SWE) can be used to measure steatosis as well as liver fibrosis. To assess the utility of SWE in preclinical rodent models of NASH, animals were placed on a pro-NASH diet and underwent non-invasive ultrasound B-mode and shear wave elastography imaging to measure hepatorenal (HR) index and liver elasticity, measuring progression of both liver fat accumulation and tissue stiffness, respectively, at multiple time points over the course of a given NAFLD/NASH study.

The HR index and elasticity numbers were compared to histological markers of steatosis and fibrosis. The results showed strong correlation between the HR index and percentage of Oil Red O (ORO) staining, as well as between elasticity and Picro-Sirius Red (PSR) staining of livers. The strong correlation between classic ex vivo methods and in vivo imaging results provides evidence that shear wave elastography/ultrasound-based imaging can be used to assess disease phenotype and progression in a preclinical model of NAFLD/NASH.

Tags

Keywords Ultrasound

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved