JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Staining the Cytoplasmic Ca2+ with Fluo-4/AM in Apple Pulp

Published: November 6th, 2021

DOI:

10.3791/62526

1College of Horticulture, Qingdao Agricultural University

Isolated protoplasts of apple pulp cells were loaded with a calcium fluorescent reagent to detect cytoplasmic Ca2+ concentration.

Cytosolic Ca2+ plays a key role in plant development. Calcium imaging is the most versatile method to detect dynamic changes in Ca2+ in the cytoplasm. In this study, we obtained viable protoplasts of pulp cells by enzymatic hydrolysis. Isolated protoplasts were incubated with the small-molecule fluorescent reagent (Fluo-4/AM) for 30 min at 37 °C. The fluorescent probes successfully stained cytosolic Ca2+ but did not accumulate in vacuoles. La3+, a Ca2+ channel blocker, decreased cytoplasmic fluorescence intensity. These results suggest that Fluo-4/AM can be used to detect changes in cytosolic Ca2+ in the fruit flesh. In summary, we present a method to effectively isolate protoplasts from flesh cells of the fruit and detect Ca2+ by loading a small-molecule calcium fluorescent reagent in the cytoplasm of pulp cells.

Ca2+ plays an important role in plant signal transduction and metabolism1,2. Further, it regulates fruit quality traits3,4, including hardness, sugar content, and susceptibility to physiological disorders during storage5,6. Cytoplasmic Ca2+ plays an important role in signal transduction and regulates plant growth and development7. Disturbance of cellular calcium homeostasis can induce bitter pit in apples8, brown spot disease....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Protoplast extraction

  1. Prepare the basic solution: 20 mM CaCl2, 5 mM 2-(N-morpholino)ethanesulfonic acid, and 0.4 M D-sorbitol.
    NOTE: The pH of the basic solution was adjusted to 5.8 with 0.1 M Tris buffer, filtered through 0.22 µm water-soluble filters, and stored at 4 °C.
  2. Prepare the enzymatic solution: Mix 0.3%(w/v) Macerozyme R-10 and 0.5%(w/v) cellulase R-10 with the basic solution.
  3. Add 0.5 mL of enzymatic solution into a 1.5 mL centrifug.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Following the protocol described above, we used the enzymatic method to obtain viable protoplasts from the pulp (Figure 1). Some protoplasts had vacuoles, while others did not. While the protoplasts exhibited no fluorescence when the Ca2+ fluorescent indicator was not loaded into them. When Fluo-4/AM was loaded into the protoplasts, the cytoplasm, but not the vacuole, became fluorescent (Figure 2). This result indicated that Fluo-4/AM successfully sta.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this study, viable protoplasts were obtained by enzymatic hydrolysis. Note that this method requires fresh apples. The present protocol allows for the rapid isolation of a large number of protoplasts from fruit pulp for use in research studies. The applicability of this method is not limited to 'Fuji'; the protoplasts of the apple pulp of 'Dounan' and 'Honey Crisp' can also be extracted through the same protocol (Supplementary Figure S4). The protoplast solution after enzymolys.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Agricultural Variety Improvement Project of Shandong Province (2019LZGC007) and Fruit tree innovation team of Shandong modern agricultural industry technology system (SDAIT-06-05).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10× phosphate-buffered saline Solarbio P1022 PBS (phosphate buffered solution) is a phosphate buffer solution, which can provide a relatively stable ionic environment and pH buffering capacity. It is a buffer salt solution often used in biology for molecular cloning and cell culture. The pH is 7.4. 
2-(N-morpholino)ethanesulfonic acid Solarbio M8010 Biological buffer
CaCl2·2H2O Solarbio C8370 Calcium chloride dihydrate is a white or gray chemical, mostly in granular form.
Cellulase R-10 Yakult Honsha MX7352 Degrade plant cell walls.
D-sorbitol Solarbio S8090 It has good moisturizing properties, prevents drying, and prevents sugar, salt, etc. from crystallizing.
F-127 Thermo Fisher Scientific P6867 Pluronic F-127 is a non-ionic, surfactant polyol (molecular weight of approximately 12500 Daltons), which has been found to be beneficial to promote the dissolution of water-insoluble dyes and other materials in physiological media. 
FDA Thermo Fisher Scientific F1303 FDA is a cell-permeant esterase substrate that can serve as a viability probe that measures both enzymatic activity, which is require to activate its fluorescence, and cell-membrane integrity, which is required for intracellular retention of their fluorescent product. 
Fluo-4/AM Thermo Fisher Scientific F14201 The green fluorescent calcium indicator Fluo-4/AM is an improved version of the calcium indicator Fluo-3/AM. The Fluo-4/AM loads faster and is brighter at the same concentration. It can be well excited with a 488 nm argon ion laser.
Fluorescence microscope Thermo Fisher EVOS Auto 2 Observe the fluorescence image.
Macerozyme R-10 Yakult Honsha MX7351 Degrade plant tissue to separate single cells.
Tris Solarbio T8060 It is widely used in the preparation of buffers in biochemistry and molecular biology experiments.

  1. Hocking, B., Tyerman, S. D., Burton, R. A., Gilliham, M. Fruit calcium: Transport and physiology. Frontiers in Plant Science. 7, 569 (2016).
  2. Li, J., Yang, H. -. q., Yan, T. -. l., Shu, H. -. r. Effect of indole butyric acid on the transportation of stored calcium in Malus hupehensis rhed. Seedling. Agricultural Sciences in China. 5 (11), 834-838 (2006).
  3. Gao, Q., Xiong, T., Li, X., Chen, W., Zhu, X. Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae. 253, 412-421 (2019).
  4. Barrett, D. M., Beaulieu, J. C., Shewfelt, R. L. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition. 50 (5), 369-389 (2010).
  5. Deell, J. R., Khanizadeh, S., Saad, F., Ferree, D. C. Factors affecting apple fruit firmness--a review. Journal- American Pomological Society. 55 (1), 8-27 (2001).
  6. Johnston, J., Hewett, E., Hertog, M. A. T. M. Postharvest softening of apple (Malus domestica) fruit: A review. New Zealand Journal of Experimental Agriculture. 30 (3), 145-160 (2002).
  7. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., Pottosin, I. Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 220 (1), 49-69 (2018).
  8. Miqueloto, A., et al. Mechanisms regulating fruit calcium content and susceptibility to bitter pit in cultivars of apple. Acta horticulturae. 1194 (1194), 469-474 (2018).
  9. Kou, X., et al. Effects of CaCl2 dipping and pullulan coating on the development of brown spot on 'Huangguan' pears during cold storage. Postharvest Biology and Technology. 99, 63-72 (2015).
  10. Vinh, T. D., et al. Comparative analysis on blossom-end rot incidence in two tomato cultivars in relation to calcium nutrition and fruit growth. The Horticulture Journal. 87 (1), 97-105 (2018).
  11. Yamane, T. Foliar calcium applications for controlling fruit disorders and storage life in deciduous fruit trees. Japan Agricultural Research Quarterly. 48 (1), 29-33 (2014).
  12. Grienberger, C., Konnerth, A. Imaging calcium in neurons. Neuron. 73 (5), 862-885 (2012).
  13. Bootman, M. D., Rietdorf, K., Collins, T. J., Walker, S., Sanderson, M. J. Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. CSH Protocols. 2013 (2), 83 (2013).
  14. Hirabayashi, K., et al. Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium. 60 (4), 256-265 (2016).
  15. Krebs, M., et al. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2)(+) dynamics. Plant Journal. 69 (1), 181-192 (2012).
  16. Zhao, Y., et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science. 333 (2), 1888-1891 (2011).
  17. Gee, K. R., et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 27 (2), 97-106 (2000).
  18. Qu, H., Xing, W., Wu, F., Wang, Y. Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PLoS One. 11, 0152320 (2016).
  19. Suwińska, A., Wasąg, P., Zakrzewski, P., Lenartowska, M., Lenartowski, R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. Planta. 245 (5), 909-926 (2017).
  20. Sun, L., et al. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Science. 262, 81-90 (2017).
  21. Niu, Y. F., et al. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant Cell and Environment. 37 (12), 2795-2813 (2014).
  22. Qiu, L., Wang, Y., Qu, H. Loading calcium fluorescent probes into protoplasts to detect calcium in the flesh tissue cells of Malus domestica. Horticulture Research. 7, 91 (2020).
  23. Boyer, J., Liu, R. H. Apple phytochemicals and their health benefits. Nutrition Journal. 3 (1), 5 (2004).
  24. Takahashi, A., Camacho, P., Lechleiter, J. D., Herman, B. Measurement of intracellular calcium. Physiological Reviews. 79 (4), 1089-1125 (1999).
  25. Qu, H., Shang, Z., Zhang, S., Liu, L., Wu, J. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist. 174 (3), 524-536 (2007).
  26. Hadjantonakis, A. K., Pisano, E., Papaioannou, V. E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One. 3 (6), 2511 (2008).
  27. DeSimone, J. A., et al. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. Journal of Neurophysiology. 108 (12), 3206-3220 (2012).
  28. Kao, J. P., Harootunian, A. T., Tsien, R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. Journal of Biological Chemistry. 264 (14), 8179-8184 (1989).
  29. Merritt, J. E., Mccarthy, S. A., Davies, M., Moores, K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2. Biochemical Journal. 269 (2), 513-519 (1990).
  30. Li, W., et al. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium. Frontiers in Plant Science. 5 (5), 647 (2014).
  31. Zhang, W., Rengel, Z., Kuo, J. Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant Journal. 15 (1), 147-151 (1998).
  32. Qu, H., Jiang, X., Shi, Z., Liu, L., Zhang, S. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia. Journal of Plant Research. 125 (1), 185-195 (2012).
  33. Wang, Y., et al. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis. root hairs. BMC Plant Biology. 10, 53 (2010).
  34. Fujimori, T., Jencks, W. P. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Journal of Biological Chemistry. 265 (27), 16262-16270 (1990).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved