JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Minimizing Post-Infusion Portal Vein Bleeding during Intrahepatic Islet Transplantation in Mice

Published: May 10th, 2021



1Department of Surgery, Medical University of South Carolina, 2Georgetown University, 3Ralph H. Johnson Veterans Affairs Medical Center
* These authors contributed equally

Here we present refined surgical procedures on successfully performing intraportal islet transplantation, a clinically relevant but technically challenging surgical procedure, in mice.

Although the liver is currently accepted as the primary transplantation site for human islets in clinical settings, islets are transplanted under the kidney capsule in most rodent preclinical islet transplantation studies. This model is commonly used because murine intrahepatic islet transplantation is technically challenging, and a high percentage of mice could die from surgical complications, especially bleeding from the injection site post-transplantation. In this study, two procedures that can minimize the incidence of post-infusion portal vein bleeding are demonstrated. The first method applies an absorbable hemostatic gelatin sponge to the injection site, and the second method involves penetrating the islet injection needle through the fat tissue first and then into the portal vein by using the fat tissue as a physical barrier to stop bleeding. Both methods could effectively prevent bleeding-induced mouse death. The whole liver section showing islet distribution and evidence of islet thrombosis post-transplantation, a typical feature for intrahepatic islet transplantation, were presented. These improved protocols refine the intrahepatic islet transplantation procedures and may help laboratories set up the procedure to study islet survival and function in pre-clinical settings.

Intraportal islet transplantation (IIT) via the portal vein is the most commonly used method for human islet transplantation in clinical settings. The mouse IIT model offers a great opportunity to study islet transplantation and test promising interventional approaches that can enhance the efficacy of islet transplantation1. IIT was first described in the 1970s and used by several groups1,2,3,4,5. It regained popularity after the breakthrough in human islet transplantation in the yea....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures were conducted with the approval of the Institutional Animal Care and Use Committees at the Medical University of South Carolina and the Ralph H Johnson Medical Center in Charleston.

1. Diabetes induction using streptozotocin (STZ)

  1. Recipient mice preparation:
    1. Weigh all mice individually.
    2. Check blood glucose levels from a tail vein blood sample using a glucometer.
  2. STZ dose determination for three different scenarios:

    Log in or to access full content. Learn more about your institution’s access to JoVE content here

We performed syngeneic and xenogeneic islet transplantations via the portal vein. Islet graft function was observed in a dose-dependent manner in both islet transplantation models. In the syngeneic islet transplantation model using C57BL/6 mice, transplantation of 250 islets led to transitory normoglycemia before mice returned to hyperglycemia. Mice receiving 500 islets reached and maintained normoglycemia beyond 30 days after transplantation (Figure 2A). Mice in both groups showed increased.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this study, two improved procedures that can prevent bleeding and may reduce mouse mortality during mouse IIT have been demonstrated. This study enables researchers to visualize the islet transplantation model that is unique in studying the instant blood mediated inflammatory response after transplantation. The IIT model is a distinctive model for studying islet cell survival and hepatic ischemic injuries in response to islet transplantation19. Here, we refined the procedure based on previous s.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by the Department of Veterans Affairs (VA-ORD BLR&D Merit I01BX004536), and the National Institute of Health grants # 1R01DK105183, DK120394, DK118529, to HW. We would like to thank you Mr. Michael Lee and Ms. Lindsay Swaby for language editing


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10% Neutral buffered formalin v/v Fisher Scientific 23426796
1 mL Syringe with needle AHS AH01T
20 mL Syringe BD 301031
25G x 5/8" hypodermic needles BD 305122
Alcohol prep pads, sterile Fisher Scientific 22-363-750
Animal Anesthesia system VetEquip, Inc. 901806
Buprenorphine hydrochloride, injection Par Sterile Products, LLC NDC 42023-179-05
Centrifuge tubes, 15 mL Fisher Scientific 0553859A
CMRL-1066 Corning 15110CV
DMEM Corning 10013CV
Ethanol, absolute (200 proof), molecular biology grade Fisher Scientific BP2818500
Extra fine Micro Dissecting scissors 4” straight sharp Roboz Surgical Instrument Co. RS-5882
Fetal bovine serum (FBS) Corning 35011CV
FreeStyle  Glucose meter Abbott Lite
FreeStyle Blood Glucose test strips Abbott Lite
Gelfoam (absorbable gelatin sponge, USP) Pharmacia & Upjohn Company 34201
Graefe forceps 4” extra delicate tip Roboz Surgical Instrument Co. RS-5136
Heated pad Amazon B07HMKMBKM
Hegar-Baumgartner Needle Holder 5.25” Roboz Surgical Instrument Co. RS-7850
Insulin syringe with 27-gauge needle BD 879588
Iodine prep pads Fisher Scientific 19-027048
Isoflurane Piramal Critical Care NDC 66794-017-25
Penicillin/streptomycin (P/S) HyClone SV30010
Polypropylene Suture 4-0 Med-Vet International MV-8683
Polypropylene Suture 5-0 Med-Vet International MV-8661
Sodium chloride, 0.9% intravenous solution VWR 2B1322Q
Streptozocin (STZ) Sigma S0130
Surgical drape, sterile Med-Vet International DR1826
Tissue Cassette Fisher Scientific 22-272416

  1. Pellegrini, S., Cantarelli, E., Sordi, V., Nano, R., Piemonti, L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetology. 53 (5), 683-691 (2016).
  2. Ballinger, W. F., Lacy, P. E. Transplantation of intact pancreatic islets in rats. Surgery. 72 (2), 175-186 (1972).
  3. Wright, J. R., Hauptfeld, V., Lacy, P. E., et al. Induction of Ia antigen expression on murine islet parenchymal cells does not diminish islet allograft survival. American Journal of Pathology. 134 (2), 237-242 (1989).
  4. Toyofuku, A., et al. Natural killer T-cells participate in rejection of islet allografts in the liver of mice. Diabetes. 55 (1), 34-39 (2006).
  5. Goss, J. A., Nakafusa, Y., Finke, E. H., Flye, M. W., Lacy, P. E. Induction of tolerance to islet xenografts in a concordant rat-to-mouse model. Diabetes. 43 (1), 16-23 (1994).
  6. Hara, M., et al. A mouse model for studying intrahepatic islet transplantation. Transplantation. 78 (4), 615-618 (2004).
  7. Shapiro, A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New England Journal of Medicine. 343 (4), 230-238 (2000).
  8. Wang, J., et al. Alpha-1 antitrypsin enhances islet engraftment by suppression of instant blood-mediated inflammatory reaction. Diabetes. 66 (4), 970-980 (2017).
  9. Gou, W., et al. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. American Journal of Transplantation. , (2020).
  10. Contreras, J. L., et al. Activated protein C preserves functional islet mass after intraportal transplantation: A novel link between endothelial cell activation, thrombosis, inflammation, and islet cell death. Diabetes. 53 (11), 2804-2814 (2004).
  11. Moberg, L., et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 360 (9350), 2039-2045 (2002).
  12. Melzi, R., et al. Intrahepatic islet transplant in the mouse: functional and morphological characterization. Cell Transplantation. 17 (12), 1361-1370 (2008).
  13. Wang, H., et al. Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes. 54 (5), 1400-1406 (2005).
  14. Desai, C. S., et al. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation. Islets. 9 (6), 140-149 (2017).
  15. Cui, W., Angsana, J., Wen, J., Chaikof, E. L. Liposomal formulations of thrombomodulin increase engraftment after intraportal islet transplantation. Cell Transplantation. 19 (11), 1359-1367 (2010).
  16. Cui, W., et al. Thrombomodulin improves early outcomes after intraportal islet transplantation. American Journal of Transplantation. 9 (6), 1308-1316 (2009).
  17. Proto, C., Grasso, G., Fassio, P. G. Hepatoparenchymal clearance of indocyanine green in infectious hepatitis. Giornale di Malattie Infettive e Parassitarie. 20 (9), 845-851 (1968).
  18. Cabral, F., et al. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. Journal of Visualized Experiments. (132), e56993 (2018).
  19. Khatri, R., Hussmann, B., Rawat, D., Gurol, A. O., Linn, T. Intraportal transplantation of pancreatic islets in mouse model. Journal of Visualized Experiments. (135), e57559 (2018).
  20. Wang, H., et al. Autologous mesenchymal stem cell and islet cotransplantation: Safety and efficacy. Stem Cells Translational Medicine. 7 (1), 11-19 (2018).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved