JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Assessment of Global DNA Double-Strand End Resection using BrdU-DNA Labeling coupled with Cell Cycle Discrimination Imaging

Published: April 28th, 2021

DOI:

10.3791/62553

1Oncology Division, Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, 2Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, 3Oncology Division, CHU de Québec Research Center, CHUL Pavilion

* These authors contributed equally

Abstract

The study of the DNA damage response (DDR) is a complex and essential field, which has only become more important due to the use of DDR-targeting drugs for cancer treatment. These targets are poly(ADP-ribose) polymerases (PARPs), which initiate various forms of DNA repair. Inhibiting these enzymes using PARP inhibitors (PARPi) achieves synthetic lethality by conferring a therapeutic vulnerability in homologous recombination (HR)-deficient cells due to mutations in breast cancer type 1 (BRCA1), BRCA2, or partner and localizer of BRCA2 (PALB2).

Cells treated with PARPi accumulate DNA double-strand breaks (DSBs). These breaks are processed by the DNA end resection machinery, leading to the formation of single-stranded (ss) DNA and subsequent DNA repair. In a BRCA1-deficient context, reinvigorating DNA resection through mutations in DNA resection inhibitors, such as 53BP1 and DYNLL1, causes PARPi resistance. Therefore, being able to monitor DNA resection in cellulo is critical for a clearer understanding of the DNA repair pathways and the development of new strategies to overcome PARPi resistance. Immunofluorescence (IF)-based techniques allow for monitoring of global DNA resection after DNA damage. This strategy requires long-pulse genomic DNA labeling with 5-bromo-2′-deoxyuridine (BrdU). Following DNA damage and DNA end resection, the resulting single-stranded DNA is specifically detected by an anti-BrdU antibody under native conditions. Moreover, DNA resection can also be studied using cell cycle markers to differentiate between various phases of the cell cycle. Cells in the S/G2 phase allow the study of end resection within HR, whereas G1 cells can be used to study non-homologous end joining (NHEJ). A detailed protocol for this IF method coupled to cell cycle discrimination is described in this paper.

Explore More Videos

Keywords DNA Double strand Break

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved