JoVE Logo

Sign In

Abstract

Immunology and Infection

Activation and Conjugation of Soluble Polysaccharides using 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP)

Published: June 14th, 2021

DOI:

10.3791/62597

1Fina Biosolutions LLC

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

Abstract

Conjugate vaccines are remarkable advances in vaccinology. For the preparation of polysaccharide conjugate vaccines, the polysaccharides can be conveniently functionalized and linked to vaccine carrier proteins using 1-cyano-4-dimethylaminopyridine tetrafluoroborate (CDAP), an easy-to-handle cyanylating reagent. CDAP activates polysaccharides by reacting with carbohydrate hydroxyl groups at pH 7-9. The stability and reactivity of CDAP are highly pH-dependent. The pH of the reaction also decreases during activation due to the hydrolysis of CDAP, which makes good pH control the key to reproducible activation. The original CDAP activation protocol was performed at room temperature in unbuffered pH 9 solutions.

Due to the rapid reaction under this condition (<3 min) and the accompanying fast pH drop from the rapid CDAP hydrolysis, it was challenging to quickly adjust and maintain the target reaction pH in the short time frame. The improved protocol described here is performed at 0 °C, which slows CDAP hydrolysis and extends the activation time from 3 min to ~15 min. Dimethylaminopyridine (DMAP) was also used as a buffer to pre-adjust the polysaccharide solution to the target activation pH before adding the CDAP reagent. The longer reaction time, coupled with the slower CDAP hydrolysis and the use of DMAP buffer, makes it easier to maintain the activation pH for the entire duration of the activation process. The improved protocol makes the activation process less frenetic, more reproducible, and more amenable to scaling up.

Erratum

Erratum: Activation and Conjugation of Soluble Polysaccharides using 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP)

An erratum was issued for: Activation and Conjugation of Soluble Polysaccharides using 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP). A figure was updated.

Figure 4 was updated from:

Figure 4
Figure 4: Representative results for CDAP activation of dextran. Typical standard curves for the (A) resorcinol/sulfuric acid and (B) TNBS assays. The assay results for dextran activated with 0.25 and 0.5 mg CDAP/mg dextran are shown. Glucose was used as the standard for the resorcinol assay. Dextran, in mg/mL, is divided by 100 kDa to give a molar concentration. The hydrazide concentration is determined using ADH as the standard and the results expressed as µM Hz. (C) Calculation of hydrazide: dextran ratios.The level of derivatization was calculated as hydrazides per 100 kDa of dextran to facilitate the comparison between polymers of different average molecular weights. The % weight ratio of g ADH/g dextran was calculated using a MW of 174 g/mole for ADH. Please click here to view a larger version of this figure.

to:

Figure 4
Figure 4: Representative results for CDAP activation of dextran. Typical standard curves for the (A) resorcinol/sulfuric acid and (B) TNBS assays. The assay results for dextran activated with 0.25 and 0.5 mg CDAP/mg dextran are shown. Glucose was used as the standard for the resorcinol assay. Dextran, in mg/mL, is divided by 100 kDa to give a molar concentration. The hydrazide concentration is determined using ADH as the standard and the results expressed as µM Hz. (C) Calculation of hydrazide: dextran ratios.The level of derivatization was calculated as hydrazides per 100 kDa of dextran to facilitate the comparison between polymers of different average molecular weights. The % weight ratio of g ADH/g dextran was calculated using a MW of 174 g/mole for ADH. Please click here to view a larger version of this figure.

Explore More Videos

Keywords Polysaccharide Activation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved