A subscription to JoVE is required to view this content. Sign in or start your free trial.
The recruitment of leukocytes and platelets constitutes an essential component necessary for the effective growth of collateral arteries during arteriogenesis. Multiphoton microscopy is an efficient tool for tracking cell dynamics with high spatio-temporal resolution in vivo and less photo-toxicity to study leukocyte recruitment and extravasation during arteriogenesis.
Arteriogenesis strongly depends on leukocyte and platelet recruitment to the perivascular space of growing collateral vessels. The standard approach for analyzing collateral arteries and leukocytes in arteriogenesis is ex vivo (immuno-) histological methodology. However, this technique does not allow the measurement of dynamic processes such as blood flow, shear stress, cell-cell interactions, and particle velocity. This paper presents a protocol to monitor in vivo processes in growing collateral arteries during arteriogenesis utilizing intravital imaging. The method described here is a reliable tool for dynamics measurement and offers a high-contrast analysis with minimal photo-cytotoxicity, provided by multiphoton excitation microscopy. Prior to analyzing growing collateral arteries, arteriogenesis was induced in the adductor muscle of mice by unilateral ligation of the femoral artery.
After the ligation, the preexisting collateral arteries started to grow due to increased shear stress. Twenty-four hours after surgery, the skin and subcutaneous fat above the collateral arteries were removed, constructing a pocket for further analyses. To visualize blood flow and immune cells during in vivo imaging, CD41-fluorescein isothiocyanate (FITC) (platelets) and CD45-phycoerythrin (PE) (leukocytes) antibodies were injected intravenously (i.v.) via a catheter placed in the tail vein of a mouse. This article introduces intravital multiphoton imaging as an alternative or in vivo complementation to the commonly used static ex vivo (immuno-) histological analyses to study processes relevant for arteriogenesis. In summary, this paper describes a novel and dynamic in vivo method to investigate immune cell trafficking, blood flow, and shear stress in a hindlimb model of arteriogenesis, which enhances evaluation possibilities notably.
Despite intensive research interest during recent years, cardiovascular diseases, e.g., ischemic heart disease and stroke, are still the leading global cause of death1. Current treatments for these diseases are highly invasive therapies such as percutaneous transluminal angioplasty, percutaneous transluminal coronary angioplasty, or bypass surgery2. Therefore, the development of alternative, non-invasive therapeutic options is urgently needed. The body can create natural bypasses around a stenosed or occluded vessel to redirect the interrupted blood flow to the distal part of the stenosis. This process is called arteriogenesis2. Many recent studies have shown that increased fluid shear impacts leukocyte recruitment, which plays an important role during arteriogenesis3. The main current options to analyze the recruitment of leukocytes during arteriogenesis are ex vivo (immuno-) histological analyses or fluorescence-activated cell sorting (FACS) methodology4. To enable the assessment of leukocyte dynamics during arteriogenesis, this paper presents an intravital imaging protocol with multiphoton microscopy.
Leukocytes are the major blood cells recruited during the process of arteriogenesis3. This protocol uses multiphoton imaging to show the crawling of adherent leukocytes labeled with injected anti-CD45-PE antibodies in collateral arteries, 24 h after the induction of arteriogenesis by femoral artery ligation (FAL) employing a murine hindlimb ischemia model5,6. Alternatively, immune cells can be labeled ex vivo and carefully injected into mice, as shown in studies on angiogenesis using intravital microscopy7. The blood flow inside vessels and arteries can be visualized by CD41-FITC (to label platelets), dextran-FITC (plasma), or by the second harmonic generation (SHG), which visualizes collagen type 1 present in the basement membrane of some part of the vascular tree. SHG is a unique free labeling effect of the multiphoton excitation. Multiphoton imaging allows long-term cell tracking without harming the tissue and activating the cells by laser power excitation. Multiphoton microscopy is the imaging method of choice for visualizing fluorescently labeled cells and structures in living animals due to its ability to excite the fluorophores deeper into the tissue/organs with minimal phototoxicity8.
The use of tuned infrared lasers with pulses delivered within femtosecond intervals excites the fluorochrome only at the focal plane, with no excitation above and below the focal plane8. Thus, multiphoton microscopy allows high spatio-temporal resolution, less photo-damage, and increased tissue penetration imaging for studying dynamic biological events inside the organs. It is an ideal microscopy tool for live-animal imaging. However, multiphoton and any other art of intravital microscopy is limited by tissue motion due to heartbeat, respiration, peristaltic movements, muscle tonality, and other physiological functions, which disturbs imaging acquisition and analysis. As these movements impair temporal and spatial resolution and sometimes even prohibit subsequent analysis, they must be addressed appropriately to enable accurate data analysis and interpretation. Several strategies have been developed to lower or prevent artifacts from tissue motion. This protocol applies an in situ drift correction software called VivoFollow9 to correct tissue drift during image acquisition. This approach provides the required image stabilization, enabling long-term imaging and cell-tracking analysis.
This study was approved by the Bavarian Animal Care and Use Committee (approved by ethical code: ROB-55.2Vet-2532.Vet_02-17-99); these experiments were carried out in strict accordance with the German animal legislation guidelines.
1. Animals and femoral artery ligation (FAL)
NOTE: To induce sterile inflammation and arteriogenesis, 8-10 weeks old male C57BL/6J mice were used. None of the mice died or suffered from wound infection or wound healing disturbance during or post-FAL or sham surgery, respectively.
2. Tissue preparation for multiphoton intravital imaging
3. Intravital multiphoton microscopy
Multiphoton microscopy offers a high spatio-temporal resolution for leukocyte tracking, wherein cell migration steps and speed can be tracked and monitored (Figure 4A,B). However, the physiological motion of the sample poses a challenge, especially for long-term intravital microscopy image acquisitions. Therefore, a good tissue preparation and holders to fix the tissue and tools, such as real-time imaging correction for tissue drift, are required for successful and stable im...
The described method of multiphoton in vivo analysis of leukocyte recruitment represents an addition to commonly used tools for leukocyte recruitment studies such as (immuno-) histological or FACS analyses. With this imaging method, it is possible to visualize in greater detail the dynamic processes in leukocyte adherence and extravasation during arteriogenesis10. Despite the added value of this method, the offered protocol includes some critical steps and limitations. See Table 1...
The authors have no conflicts of interest to declare.
The study was funded by the Deutsche Forschungsgemeinschaft SFB 914 (HI-A/SM, project Z01). We thank Dr. Susanne Stutte for reading the manuscript.
Name | Company | Catalog Number | Comments |
1.0 mL Syringe | BD Biosciences, San Jose, CA, USA | 309628 | syringe for injection |
3M Durapore Surgical Tape 1538-0 | 3M, St. Paul, MN, USA | 1538-0 | fixation tape |
Atipamezole | Zoetis, Berlin, Germany | antagonize anesthesia | |
Buprenorphine | Reckitt Benckiser Healthcare, Slough, UK | antagonize anesthesia | |
C57/B6J mouse | Charles River, Sulzfeld, Germany | used animals for surgery/imaging | |
CD41-FITC ab | Biolegend | 133904 | Platelet labeling in vivo |
CD45-PE ab | Biolegend | 368510 | Leukocytes labelling in vivo |
Disinfectant Cutasept | Carl Roth GmbH, Karlsruhe, Deutschland | AK64.2 | Disinfection |
Eye cream (Bepanthen) | Bayer Vital GmbH | 5g | |
Fentanyl | CuraMED Pharma, Karlsruhe, Germany | anesthesia | |
Flumazenile | Inresa Arzneimittel GmbH, Freiburg, Deutschland | antagonize anesthesia | |
Fine bore polythene tubing | Smiths medical | Lot 278316 | 0.28 mm ID and 0.61 mm OD, tubing for the vein catheter |
Histoacryl flexible | BRAUM | 1050052 | tissue glue |
Imaris software | Oxford Instruments | version 9.2 | Used for cell tracking, cell speed analysis, 3D projection |
Laser Doppler Imaging instrument | Moor LDI 5061 and Moor Software Version 3.01, Moor Instruments, Remagen, Germany | ||
LEICA KL300 LED | Leica, Solms, Germany | light for microscope | |
Leica M60 | Leica, Solms, Germany | microscope for surgery | |
LEICA MC120 HD | Leica, Solms, Germany | camera for microscope | |
Medetomidine | Pfizer Pharma, Berlin, Germany | anesthesia | |
Midazolam | Ratiopharm GmbH, Ulm, Germany | anesthesia | |
Multiphoton microscope | Lavision | TRIMScope II | WL 820 nm |
NaCl 0.9% | Braun, Melsungen, Deutschland | 3570310 | saline for pocket |
Naloxone | Inresa Arzneimittel GmbH, Freiburg, Deutschland | antagonize anesthesia | |
Needle 30 G | BD Biosciences, San Jose, CA, USA | 305128 | needle for i.v. catheter |
Silk braided suture (0/7) | Pearsalls Ltd., Taunton, UK | SUT-S 103 | suture for femoral artery ligation |
Ultrason Gel | SONOSID-ASID BONZ 250 mL | 782012 | gel for imaging |
Vicryl 6.0 suture | Vicryl, Johnson&Johnson, New Brunswick, NJ, USA | NW-2347 | suture to build pocket |
VivoFollow drift correction software | Developed by Mykhailo Vladymyrov | Reference 9 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved