Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Under adequate anesthesia, the mouse heart was externalized through the intercostal space, and myocardial infarction was successfully induced by ligating the left anterior descending artery (LAD) using materials readily available in most laboratories.

Abstract

Myocardial infarction (MI) represents one of the leading causes of death. MI models are widely used for investigating the pathomechanisms of post-MI remodeling and evaluation of novel therapeutics. Different methods (e.g., isoproterenol treatment, cryoinjury, coronary artery ligation, etc.) have been used to induce MI. Compared with isoproterenol treatment and cryoinjury, coronary artery ligation may better reflect the ischemic response and chronic remodeling after MI. However, traditional methods for coronary ligation in mice are technically challenging. The current study describes a simple and efficient process for induction of MI in mice with readily available materials. The mouse chest skin was cut open under stable anesthesia. The heart was immediately externalized through the intercostal space after blunt separation of the pectoralis major and pectoralis minor. The left anterior descending branch (LAD) was ligated with a 6-0 suture 3 mm from its origin. Following LAD ligation, staining with 2,3,5-Triphenyltetrazolium chloride (TTC) indicated successful induction of MI and temporal changes of post-MI scar size. Meanwhile, survival analysis results showed overt mortality within 7 days after MI, mainly due to cardiac rupture. Moreover, post-MI echocardiographic assessment demonstrated successful induction of contractile dysfunction and ventricular remodeling. Once mastered, an MI model can be established in mice within 2-3 min with readily available materials.

Introduction

Myocardial infarction (MI) represents one of the significant causes of death and disability worldwide1,2,3,4,5. Despite timely reperfusion, there is currently a lack of effective therapies to treat post-MI cardiac remodeling. Correspondingly, considerable efforts have been made to mechanistic exploration and therapy exploitation for MI6,7,8. Of note, the establishment of MI models is a prerequisite to meet these en....

Protocol

The experiments involving animal work are performed with all necessary approvals from the Laboratory Animal Welfare Ethics Committee of Renji Hospital, Shanghai Jiao Tong University, School of Medicine (R52021-0506). Female and male C57BL/6J mice aged between 8-10 weeks were used in the study.

1. Preparation of the simplified anesthesia equipment (OPTIONAL)

NOTE: This is an optional pre-operative set up and can be replaced with titratable anesthesia a.......

Representative Results

The experimental protocol and some of the critical steps are shown in Figure 1. The simplified anesthesia equipment induced anesthesia. As shown in Figure 2A, the induced anesthesia was stable, as reflected by the regular breathing rates (varied from 90-107 breaths/min in the tested mice). Following coronary artery ligation, TTC staining analysis indicated successful induction of myocardial infarction and temporal changes of post-MI scar size (

Discussion

The present report demonstrated a easy protocol for MI induction in mice with readily available materials, which was modified from a method reported by Gao16. Murine MI models are indispensable for mechanistic exploration and drug screen for post-MI dysfunction and remodeling12. Among the existing techniques for MI induction, coronary artery ligation represents the most commonly practiced one. Coronary artery ligation faithfully recapitulates the ischemia nature of myo.......

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81930007, 81625002, 81800307, 81470389, 81500221, 81770238), the Shanghai Outstanding Academic Leaders Program (18XD1402400), the Science and Technology Commission of Shanghai Municipality (201409005200), Shanghai Pujiang Talent Program (2020PJD030), and China Postdoctoral Science Foundation (2020M671161, BX20190216).

....

Materials

NameCompanyCatalog NumberComments
2,3,5-Triphenyltetrazolium chlorideSIGMAT8877-25GTTC staining
4-0 silk sutureYUANKANG4-0Surgical instrument
AutoclaveHIRAYAMAHVE-50Sterilization for the solid
BuprenorphineQinghai Pharmaceutical FACTORY Co., Ltd.H10940181reduce post-operative pain
Centrifugation tubeBiological Hope1850-K15ML
Depilatory creamZIKER BIOTECHNOLOGYZK-L2701Depilation agent for laboratory animals
ForcepRWDF12028Surgical instrument
Gas filterZHAOXINSA-493Operator protection
IsofluraneRWD20071302Used for anesthesia
Light sourceBeijing PDVLG-150BOperating lamp
Micro-mosquito hemostatFST13011-12Surgical instrument
NeedleBINXIONG42180104Surgical instrument
Needle and the 6-0 silk sutureJIAHESC086Surgical instrument
Needle holderShangHaiJZJ32030Surgical instrument
Needle holderShangHaiJZJ32010Surgical instrument
Povidone-iodine swabsSingleLadyGB26368-2010Skin disinfection
ScissorsCNSTRONGJYJ1030Surgical instrument
Sterile eye creamShenyang Xingqi Pharmaceutical Co., Ltd.H10940177prevent corneal dryness
Ultra-high resolution ultrasound imaging system for small animalsVisualSonicsVevo 2100Echocardiographic analysis

References

  1. Fu, Y., et al. A simple and efficient method for in vivo cardiac-specific gene manipulation by intramyocardial injection in mice. Journal of Visualized Experiments. (134), e57074 (2018).
  2. Pell, S., Fayerweather, W. E.

Explore More Articles

Myocardial InfarctionMouse ModelSurgical ProcedureTTC StainingPost MI RemodelingCoronary Artery LigationHeart SlicingTissue Perfusion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved