A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Denne protokollen beskriver mikrofabrikasjonsteknikkene som kreves for å bygge en lab-on-a-chip, mikrofluidisk elektroporeringsenhet. Det eksperimentelle oppsettet utfører kontrollerte transfeksjoner på enkeltcellenivå i en kontinuerlig flyt og kan utvides til høyere gjennomstrømning med populasjonsbasert kontroll. En analyse er gitt som viser evnen til elektrisk å overvåke graden av cellemembranpermeabilisering i sanntid.

Abstract

Nåværende terapeutiske innovasjoner, som CAR-T-celleterapi, er sterkt avhengige av virusmediert genlevering. Selv om den er effektiv, er denne teknikken ledsaget av høye produksjonskostnader, noe som har ført til interesse for å bruke alternative metoder for genlevering. Elektroporering er en elektrofysisk, ikke-viral tilnærming for intracellulær levering av gener og andre eksogene materialer. Ved påføring av et elektrisk felt tillater cellemembranen midlertidig molekylær levering inn i cellen. Vanligvis utføres elektroporering på makroskala for å behandle et stort antall celler. Denne tilnærmingen krever imidlertid omfattende empirisk protokollutvikling, noe som er kostbart når man arbeider med primære og vanskelige å transfekte celletyper. Langvarig protokollutvikling, kombinert med kravet om store spenninger for å oppnå tilstrekkelige elektriske feltstyrker for å gjennomsyre cellene, har ført til utvikling av mikroskala elektroporeringsenheter. Disse mikroelektroporeringsenhetene er produsert ved hjelp av vanlige mikrofabrikasjonsteknikker og gir mulighet for større eksperimentell kontroll med potensial til å opprettholde høy gjennomstrømningskapasitet. Dette arbeidet bygger på en mikrofluidisk-elektroporeringsteknologi som er i stand til å oppdage nivået av cellemembranpermeabilisering på enkeltcellenivå under kontinuerlig strømning. Imidlertid ble denne teknologien begrenset til 4 celler behandlet per sekund, og dermed foreslås og presenteres en ny tilnærming for å øke systemgjennomstrømningen her. Denne nye teknikken, betegnet som cellepopulasjonsbasert tilbakemeldingskontroll, vurderer cellepermeabiliseringsresponsen på en rekke elektroporeringspulserende forhold og bestemmer de best egnede elektroporasjonspulsforholdene for celletypen som testes. Deretter brukes en høyere gjennomstrømningsmodus, hvor denne "optimale" pulsen påføres cellesuspensjonen under transport. Trinnene for å fremstille enheten, sette opp og kjøre mikrofluidiske eksperimenter og analysere resultatene presenteres i detalj. Til slutt demonstreres denne mikroelektroporeringsteknologien ved å levere en DNA-plasmidkoding for grønt fluorescerende protein (GFP) i HEK293-celler.

Introduction

Nåværende terapeutiske innovasjoner innen biomedisinsk forskning, som CAR-T (Chimeric Antigen Receptor Engineered T cell) celleterapi og genetisk redigering ved hjelp av CRISPR (gruppert regelmessig interspaced korte palindromiske repeterende DNA-sekvenser) / Cas9, er sterkt avhengig av evnen til å levere eksogent materiale både vellykket og effektivt inn i det intracellulære rommet1. I CAR-T-terapi er gullstandarden for å utføre genleveringstrinnet i celleterapiproduksjon ved bruk av virale vektorer2. Selv om virusmediert genlevering er en effektiv leveringsmodalitet, har den også flere ulemper. Disse inkluderer produks....

Protocol

MERK: Brukere bør gå gjennom alle muskel- og skjelettlidelser for materialene og utstyret som brukes i denne protokollen. Egnet PPE skal brukes på hvert trinn og steril teknikk som brukes under eksperimentering. §§ 1-7 omhandler oppbyggingen av innretningen.

1. Enhetsfabrikasjon - Maskedesign

MERK: Se figur 2 for en illustrasjon av mikrofabrikasjonsprosessen. Mikrofabrikasjonstrinnene skal utføres i et renromsmiljø. Ytterligere PPE er nødvendig (hårnett, ansiktshårnett, maske, renromsdrakt, skodeksler).

  1. Installer en CAD-programvare etter eget valg, design e....

Representative Results

Figur 4 fremhever driftsprinsippene bak deteksjon av enkeltcellemembranpermeabilisering for en enkelt pulsamplitude. Etter initiering av elektroporeringseksperimentet bestemmer celledeteksjonsalgoritmen en optimal terskel for celledeteksjon via en punkt-for-punkt, skråningsbasert deteksjonsmetode. Systemet overvåker deretter kontinuerlig (1) for en signifikant negativ endring i den målte elektriske strømmen, noe som indikerer inngangen til en celle. Dette skyldes den biologiske cellememb.......

Discussion

Metodikken som presenteres i denne protokollen fokuserer primært på mikrofabrikasjon av en mikrofluidisk enhet som deretter integreres i et spesialisert elektroporeringseksperimentelt oppsett. Begrepet "oppskrift", som ofte brukes når man beskriver detaljene i mikrofabrikasjonsprosessen, antyder viktigheten av å følge / optimalisere hvert trinn for å kunne fremstille en fungerende enhet. Imidlertid kan visse kritiske trinn i prosessen, når de ikke er optimalisert, for eksempel UV-eksponeringstid / energi, PVD-sput.......

Disclosures

Forfatterne har ingenting å avsløre.

Acknowledgements

Forfatterne ønsker å anerkjenne økonomisk støtte fra National Science Foundation (NSF CBET 0967598, DBI IDBR 1353918) og US Department of Education's Graduate Training in Emerging Areas of Precision and Personalized Medicine (P200A150131) for finansiering av kandidatstudent JJS på fellesskap.

....

Materials

NameCompanyCatalog NumberComments
150-mm diameter petri dishesVWR25384-326step 6.1.1 to secure wafer
24-well tissue culture platesVWR10062-896step 10.3.6 to plate electroporated cells
33220A Waveform/Function generatorAgilentstep 9.2.3 electroporation pulse generator
4'' Si-wafersUniversity Wafersubsection 2.1 for microfluidic channel fabrication
6-well tissue culture platesVWR10062-892step 8.1.8 to plate cells
AcetoneFisher ScientificA18-4step 2.1.2 for cleaning and  step 5.1 photoresist lift-off
Allegra X-22R CentrifugeBeckman Coultersteps 8.1.4 , 8.3.2. and 8.3.3. to spin down cells
AutoCAD 2018Autodesksubsection 1.1. to design transparency masks
Buffered oxide etchant 10:1VWR901621-1Lsubsection 3.1 for HF etching
CCD Monochrome microscope cameraHamamatsuOrca 285 C4742-96-12G04step 11.2.3. for imaging
CMOS camera- Sensicam QE 1.4MPPCOsubsection 9.3 part of the experimental setup
Conductive EpoxyCircuitWorksCW2400subsection 7.6. for wire attachement
Conical Centrifuge Tubes, 15 mLFisher Scientific14-959-70Cstep 8.1.4. for cell centrifuging
Dektak 3ST Surface ProfilometerVeeco (Sloan/Dektak)step 2.1.15 and 5.4 for surface profilometry
Disposable biopsy punch, 0.75 mmRobbins InstrumentsRBP075step 6.2.3 for inlet access
Disposable biopsy punch, 3 mmRobbins InstrumentsRBP30Pstep 6.2.3 for outlet access
DRAQ5abcamab108410step 11.2.2. for live cell staining
Dulbecco’s Modified Eagle’s MediumThermoFisher Scientific11885084step 8.1.2. part of media composition
E3631A Bipolar Triple DC power supplyAgilentstep 9.2.1.-9.2.2.part of the experimental setup
Eclipse TE2000-U Inverted  MicroscopeNikon subsection 9.3. part of the experimental setup
EVG620 UV Lithography SystemEVG step 2.1.9. and 2.2.7. for UV Exposure
Fetal Bovine SerumNeuromicsFBS001step 8.1.2. part of media composition
FS20 Ultrasonic CleanerFisher Scientificsubsection 5.1. for photoresist lift-off
Glass Media Bottle with Cap, 100mLFisher ScientificFB800100step 8.2.1. for buffer storage
Glass Media Bottle with Cap, 500mLFisher ScientificFB800500step 8.1.2.for media storage
HEK-293 cell lineATCCCRL-1573subsection 8.1 for cell culturing
HEPES buffer solutionSigma Aldrich83264-100ML-Fstep 8.2.1 part of electroporation buffer composition
HexamethyldisilazaneSigma Aldrich379212-25MLstep 2.2.3 adhesion promoter
HF2LI Lock-in AmplifierZurich Instrumentssubsection 9.2 part of the experimental setup
HF2TA Current amplifierZurich Instrumentssubsection 9.2 part of the experimental setup
Isopropyl AlcoholFisher ScientificA459-1step 2.1.2 for cleaning, step 2.1.14 for rinsing wafer following SU-8 development, and step 6.3.1 for cleaning PDMS
IX81 fluorescence microscopeOlympusstep 11.2.3 for imaging
L-Glutamine SolutionSigma AldrichG7513-20MLstep 8.1.2. part of media composition
M16878/1BFA 22 gauge wireAWCB22-1subsection 7.5 for device fabrication
Magnesium chlorideSigma Aldrich208337-100Gstep 8.1.2 part of electroporation buffer composition
MF 319 DeveloperKayaku Advanced Materials10018042step 2.2.9. photoresist developer
Microposit S1818 photoresistKayaku Advanced Materials1136925step 2.2.4 positive photoresist for electrode patterning
Microscope slides, 75 x 25 mmVWR16004-422step 2.2.1 electrode soda lime glass substrate
Model 2350 High voltage amplifierTEGAM2350step 9.2.5. part of the experimental setup
National Instruments LabVIEWNational Instrumentsdata acquisition
Needle, 30G x 1 inBD Scientific305128step 10.1.1. part of the system priming
PA90 IC OPAMP Power circuitDigi-key598-1330-NDPart of the custom circuit
Penicillin-StreptomycinSigma AldrichP4458-20MLstep 8.1.2. part of media composition
Plasmid pMAX-GFPLonzaVCA-1003step 8.3.4. for intracellular delivery
Plastic tubing, 0.010'' x 0.030"VWR89404-300step 10.1.2. for system priming
Platinum targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Potassium chlorideSigma AldrichP9333-500Gstep 8.2.1. part of electroporation buffer composition
Pump 11 PicoPlus microfluidic syringe pumpHarvard ApparatusMA1 70-2213step 10.1.4. for system priming
PVD75 Physical vapor deposition systemKurt J. Leskersubsection 4.1. for physical vapor deposition
PWM32 Spinner SystemHeadway Researchsteps 2.1.6 and 2.2.2. for substrate coating with photoresist
PX-250 Plasma treatment systemMarch Instrumentssubsection 7.2 for PDMS and glass substrate bonding
SDG1025 Function/Waveform generatorSiglentstep 9.2.2. part of the experimental setup
Sodium hydroxideSigma AldrichS8045-500Gstep 8.2.1. part of electroporation buffer composition
SU-8 2010 negative photoresistKayaku Advanced MaterialsY111053step 2.1.7. for microfluidic channel patterning
SU-8 developerMicrochemY010200step 2.1.12. for photoresist developing
SucroseSigma AldrichS7903-1KGstep 8.2.1. part of electroporation buffer composition
Sylgard 184 elastomer kitDow Corning3097358-1004step 6.2.1  10 : 1 mixture of PDMS polymer and hardening agent
Syringe, 1 mlBD Scientific309628step 8.3.4. part of system priming
SZ61 Stereomicroscope SystemOlympussubsection 7.3. for channel and electrode alignment
Tissue Culture Treated T25 FlasksFalcon353108step 8.1.2 for cell culturing
Titanium targetsKurt J. Leskersubsection 4.2. for physical vapor deposition
Transparency masksCAD/ART Servicessteps 2.1.9. and 2.2.7. for photolithography
Trichloro(1H,1H,2H,2H-perfluorooctyl)silaneSigma Aldrich448931-10Gstep 6.1.2. for wafer silanization
Trypsin-EDTA solutionSigma AldrichT4049-100MLsteps 8.1.3. and 8.3.1. for cell harvesting

References

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Bioengineeringelektroporeringmicrofluidicslab on a chipbiosensortransfeksjonelektro transfeksjonintracellul r levering

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved