A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the detailed, low-input sample preparation for single-nucleus sequencing, including the dissection of mouse superior cervical and stellate ganglia, cell dissociation, cryopreservation, nucleus isolation, and hashtag barcoding.
The cardiac autonomic nervous system is crucial in controlling cardiac function, such as heart rate and cardiac contractility, and is divided into sympathetic and parasympathetic branches. Normally, there is a balance between these two branches to maintain homeostasis. However, cardiac disease states such as myocardial infarction, heart failure, and hypertension can induce the remodeling of cells involved in cardiac innervation, which is associated with an adverse clinical outcome.
Although there are vast amounts of data for the histological structure and function of the cardiac autonomic nervous system, its molecular biological architecture in health and disease is still enigmatic in many aspects. Novel technologies such as single-cell RNA sequencing (scRNA-seq) hold promise for the genetic characterization of tissues at single-cell resolution. However, the relatively large size of neurons may impede the standardized use of these techniques. Here, this protocol exploits droplet-based single-nucleus RNA sequencing (snRNA-seq), a method to characterize the biological architecture of cardiac sympathetic neurons in health and disease. A stepwise approach is demonstrated to perform snRNA-seq of the bilateral superior cervical (SCG) and stellate ganglia (StG) dissected from adult mice.
This method enables long-term sample preservation, maintaining an adequate RNA quality when samples from multiple individuals/experiments cannot be collected all at once within a short period of time. Barcoding the nuclei with hashtag oligos (HTOs) enables demultiplexing and the trace-back of distinct ganglionic samples post sequencing. Subsequent analyses revealed successful nuclei capture of neuronal, satellite glial, and endothelial cells of the sympathetic ganglia, as validated by snRNA-seq. In summary, this protocol provides a stepwise approach for snRNA-seq of sympathetic extrinsic cardiac ganglia, a method that has the potential for broader application in studies of the innervation of other organs and tissues.
The autonomic nervous system (ANS) is a crucial part of the peripheral nervous system that maintains body homeostasis, including the adaption to environmental conditions and pathology1. It is involved in the regulation of multiple organ systems throughout the body such as the cardiovascular, respiratory, digestive, and endocrine systems. The ANS is divided into sympathetic and parasympathetic branches. Spinal branches of the sympathetic nervous system synapse in ganglia of the sympathetic chain, situated bilaterally in a paravertebral position. The bilateral cervical and thoracic ganglia, especially the StG, are important components participati....
This protocol describes all steps required for the snRNA-seq of murine cervical and/or cervicothoracic (stellate) ganglia. Female and male C57BL/6J mice (15 weeks old, n = 2 for each sex) were used. One additional Wnt1-Cre;mT/mG mouse was used to visualize the ganglia for dissection purposes17,18. This additional mouse was generated by the crossbreeding of a B6.Cg-Tg(Wnt1-cre)2Sor/J mouse and a B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mouse. All animal experiments were carried out according to the Guide for Care and Use of Laboratory Animals published by NIH and approved by the Animal Ethics Commi....
Quality control analysis of the single-nucleus cDNA library preparation and snRNA-seq
Representative results describe sequencing results of 10,000 captured nuclei in a single pool with a 25,000 reads/nucleus gene expression library and a 5,000 reads/nucleus hashtag library. Figure 3B illustrates the quality control results of the 1st strand cDNA, gene expression (GEX) library, and HTO library, which were checked with Bioanalyzer. The HTO-derived cDNAs are ex.......
Here, a detailed protocol is described that focuses on i) the dissection of adult mouse superior cervical and stellate sympathetic ganglia, ii) the isolation and cryopreservation of the ganglionic cells, iii) nucleus isolation, and iv) nucleus-barcoding with HTO labeling for multiplexing purposes and snRNA-seq.
With this protocol, sympathetic ganglionic cells can easily be obtained by dissociating individual ganglia using commonly used trypsin and collagenase. Long-term preservation of isolate.......
The authors have no conflicts of interest to disclose.
We thank Susan L. Kloet (Department of Human Genetics, LUMC, Leiden, the Netherlands) for her help in experimental design and useful discussions. We thank Emile J. de Meijer (Department of Human Genetics, LUMC, Leiden, the Netherlands) for the help with single-nucleus RNA isolation and library preparation for sequencing. This work is supported by the Netherlands Organization for Scientific Research (NWO) [016.196.346 to M.R.M.J.].
....Name | Company | Catalog Number | Comments |
Chemicals and reagents | |||
0.25% Trypsin-EDTA | Thermo Fisher Scientific | 25200056 | |
0.4% trypan blue dye | Bio-Rad | 1450021 | |
Antibiotic-Antimycotic | Gibco | 15240096 | |
B-27 | Gibco | A3582801 | |
Collagenase type 2 | Worthington | LS004176 | use 1,400 U/mL |
Dimethyl sulfoxide | Sigma Aldrich | 67685 | |
Ethanol absolute ≥99.5% | VWR | VWRC83813.360 | |
Fetal bovine serum (low endotoxin) | Biowest | S1810-500 | |
L-glutamine | Thermo Fisher Scientific | 25030024 | |
Neurobasal Medium | Gibco | 21103049 | |
Bovine Serum Albumin 10% | Sigma-Aldrich | A1595-50ML | Cell wash buffer |
DPBS (Ca2+, Mg2+free) | Gibco | 14190-169 | Cell wash buffer |
Magnesium Chloride Solution, 1 M | Sigma-Aldrich | M1028 | Nucleus Lysis buffer |
Nonidet P40 Substitute (nonionic detergent) | Sigma-Aldrich | 74385 | Nucleus Lysis buffer |
Nuclease free water (not DEPC-treated) | Invitrogen | AM9937 | Nucleus Lysis buffer |
Protector RNase Inhibitor, 40 U/µL | Sigma-Aldrich | 3335399001 | Nucleus Lysis buffer |
Sodium Chloride Solution, 5 M | Sigma-Aldrich | 59222C | Nucleus Lysis buffer |
Trizma Hydrochloride Solution, 1 M, pH 7.4 | Sigma-Aldrich | T2194 | Nucleus Lysis buffer |
Bovine Serum Albumin 10% | Sigma-Aldrich | A1595-50ML | Nucleus wash |
DPBS (Ca2+, Mg2+free) | Gibco | 14190-169 | Nucleus wash |
Protector RNase Inhibitor,40 U/µL | Sigma-Aldrich | 3335399001 | Nucleus wash |
Bovine Serum Albumin 10% | Sigma-Aldrich | A1595-50ML | ST staining buffer (ST-SB) |
Calcium chloride solution, 1 M | Sigma-Aldrich | 21115-100ML | ST staining buffer (ST-SB) |
Magnesium Chloride Solution, 1 M | Sigma-Aldrich | M1028 | ST staining buffer (ST-SB) |
Nuclease free water (not DEPC treated) | Invitrogen | AM9937 | ST staining buffer (ST-SB) |
Sodium Chloride Solution, 5M | Sigma-Aldrich | 59222C | ST staining buffer (ST-SB) |
Trizma Hydrochloride Solution, 1M, pH 7.4 | Sigma-Aldrich | T2194 | ST staining buffer (ST-SB) |
Tween-20 | Merck Millipore | 822184 | ST staining buffer (ST-SB) |
TotalSeq-A0451 anti-Nuclear Pore Complex Proteins Hashtag 1 Antibody | Biolegend | 682205 | Hashtag antibody |
TotalSeq-A0452 anti-Nuclear Pore Complex Proteins Hashtag 2 Antibody | Biolegend | 682207 | Hashtag antibody |
TotalSeq-A0453 anti-Nuclear Pore Complex Proteins Hashtag 3 Antibody | Biolegend | 682209 | Hashtag antibody |
TotalSeq-A0461 anti-Nuclear Pore Complex Proteins Hashtag 11 Antibody | Biolegend | 682225 | Hashtag antibody |
TotalSeq-A0462 anti-Nuclear Pore Complex Proteins Hashtag 12 Antibody | Biolegend | 682227 | Hashtag antibody |
TotalSeq-A0463 anti-Nuclear Pore Complex Proteins Hashtag 13 Antibody | Biolegend | 682229 | Hashtag antibody |
TotalSeq-A0464 anti-Nuclear Pore Complex Proteins Hashtag 14 Antibody | Biolegend | 682231 | Hashtag antibody |
TotalSeq-A0465 anti-Nuclear Pore Complex Proteins Hashtag 15 Antibody | Biolegend | 682233 | Hashtag antibody |
TruStain FcX (human) | Biolegend | 422302 | FC receptor blocking solution |
Equipment and consumables | |||
Bright-Line Hemacytometer | Merck | Z359629-1EA | |
Centrifuge 5702/R A-4-38 | Eppendorf | EP022629905 | |
CoolCell LX Cell Freezing Container | Corning | CLS432003-1EA | |
Cryovial | Thermo Scientific | 479-6840 | |
DNA LoBind 0.5 mL Eppendorf tube | Eppendorf | EP0030108035-250EA | |
Eppendorf Safe-Lock Tubes 1.5 mL | Eppendorf | 30121872 | |
Falcon 35 mm Not TC-treated Petri dish | Corning | 351008 | |
Falcon 15 mL Conical Centrifuge Tubes | Fisher scientific | 10773501 | |
Forceps Dumont #5 | Fine science tools | 11252-40 | |
Hardened Fine Scissors | Fine science tools | 14091-09 | |
Ice Pan, rectangular 4 L Orange | Corning | CLS432106-1EA | |
Leica MS5 | Leica | Microscope | |
Moria MC50 Scissors | Fine science tools | 15370-50 | |
Noyes Spring Scissors | Fine science tools | 15012-12 | |
Olympus CK2 ULWCD | Olympus | Microscope | |
P10 | Gilson | F144802 | |
P1000 | Gilson | F123602 | |
P200 | Gilson | F123601 | |
Preseparation Filters (30 µm) | Miltenyi biotec | Miltenyi biotec130-041-407 | |
Shaking water bath | GFL | 1083 | |
Silicon plate | RubberBV | 3530 | Dissection board |
Software and packages | |||
Cell ranger | V4.0.0 | ||
R programming | V4.1.1 | ||
R sudio | V1.3.1073 | ||
Seurat | V4.0 | ||
tydiverse | V1.3.1 | ||
Animals | |||
B6.Cg-Tg(Wnt1-cre)2Sor/J mouse | The Jackson Laboratory | JAX stock #022501 | |
B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mouse | The Jackson Laboratory | JAX stock #007576 | |
C57BL/6J mice | Charles River | ||
Code for the data analysis | |||
https://github.com/rubenmethorst/Single-cell-SCG_JoVE |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved