A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the detailed, low-input sample preparation for single-nucleus sequencing, including the dissection of mouse superior cervical and stellate ganglia, cell dissociation, cryopreservation, nucleus isolation, and hashtag barcoding.

Abstract

The cardiac autonomic nervous system is crucial in controlling cardiac function, such as heart rate and cardiac contractility, and is divided into sympathetic and parasympathetic branches. Normally, there is a balance between these two branches to maintain homeostasis. However, cardiac disease states such as myocardial infarction, heart failure, and hypertension can induce the remodeling of cells involved in cardiac innervation, which is associated with an adverse clinical outcome.

Although there are vast amounts of data for the histological structure and function of the cardiac autonomic nervous system, its molecular biological architecture in health and disease is still enigmatic in many aspects. Novel technologies such as single-cell RNA sequencing (scRNA-seq) hold promise for the genetic characterization of tissues at single-cell resolution. However, the relatively large size of neurons may impede the standardized use of these techniques. Here, this protocol exploits droplet-based single-nucleus RNA sequencing (snRNA-seq), a method to characterize the biological architecture of cardiac sympathetic neurons in health and disease. A stepwise approach is demonstrated to perform snRNA-seq of the bilateral superior cervical (SCG) and stellate ganglia (StG) dissected from adult mice.

This method enables long-term sample preservation, maintaining an adequate RNA quality when samples from multiple individuals/experiments cannot be collected all at once within a short period of time. Barcoding the nuclei with hashtag oligos (HTOs) enables demultiplexing and the trace-back of distinct ganglionic samples post sequencing. Subsequent analyses revealed successful nuclei capture of neuronal, satellite glial, and endothelial cells of the sympathetic ganglia, as validated by snRNA-seq. In summary, this protocol provides a stepwise approach for snRNA-seq of sympathetic extrinsic cardiac ganglia, a method that has the potential for broader application in studies of the innervation of other organs and tissues.

Introduction

The autonomic nervous system (ANS) is a crucial part of the peripheral nervous system that maintains body homeostasis, including the adaption to environmental conditions and pathology1. It is involved in the regulation of multiple organ systems throughout the body such as the cardiovascular, respiratory, digestive, and endocrine systems. The ANS is divided into sympathetic and parasympathetic branches. Spinal branches of the sympathetic nervous system synapse in ganglia of the sympathetic chain, situated bilaterally in a paravertebral position. The bilateral cervical and thoracic ganglia, especially the StG, are important components participati....

Protocol

This protocol describes all steps required for the snRNA-seq of murine cervical and/or cervicothoracic (stellate) ganglia. Female and male C57BL/6J mice (15 weeks old, n = 2 for each sex) were used. One additional Wnt1-Cre;mT/mG mouse was used to visualize the ganglia for dissection purposes17,18. This additional mouse was generated by the crossbreeding of a B6.Cg-Tg(Wnt1-cre)2Sor/J mouse and a B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mouse. All animal experiments were carried out according to the Guide for Care and Use of Laboratory Animals published by NIH and approved by the Animal Ethics Commi....

Results

Quality control analysis of the single-nucleus cDNA library preparation and snRNA-seq
Representative results describe sequencing results of 10,000 captured nuclei in a single pool with a 25,000 reads/nucleus gene expression library and a 5,000 reads/nucleus hashtag library. Figure 3B illustrates the quality control results of the 1st strand cDNA, gene expression (GEX) library, and HTO library, which were checked with Bioanalyzer. The HTO-derived cDNAs are ex.......

Discussion

Here, a detailed protocol is described that focuses on i) the dissection of adult mouse superior cervical and stellate sympathetic ganglia, ii) the isolation and cryopreservation of the ganglionic cells, iii) nucleus isolation, and iv) nucleus-barcoding with HTO labeling for multiplexing purposes and snRNA-seq.

With this protocol, sympathetic ganglionic cells can easily be obtained by dissociating individual ganglia using commonly used trypsin and collagenase. Long-term preservation of isolate.......

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgements

We thank Susan L. Kloet (Department of Human Genetics, LUMC, Leiden, the Netherlands) for her help in experimental design and useful discussions. We thank Emile J. de Meijer (Department of Human Genetics, LUMC, Leiden, the Netherlands) for the help with single-nucleus RNA isolation and library preparation for sequencing. This work is supported by the Netherlands Organization for Scientific Research (NWO) [016.196.346 to M.R.M.J.].

....

Materials

NameCompanyCatalog NumberComments
Chemicals and reagents
0.25% Trypsin-EDTAThermo Fisher Scientific25200056
0.4% trypan blue dyeBio-Rad1450021
Antibiotic-AntimycoticGibco15240096
B-27GibcoA3582801
Collagenase type 2WorthingtonLS004176use 1,400 U/mL
Dimethyl sulfoxideSigma Aldrich67685
Ethanol absolute ≥99.5%VWRVWRC83813.360
Fetal bovine serum (low endotoxin)BiowestS1810-500
L-glutamineThermo Fisher Scientific25030024
Neurobasal MediumGibco21103049
Bovine Serum Albumin 10%Sigma-AldrichA1595-50MLCell wash buffer
DPBS (Ca2+, Mg2+free)Gibco14190-169Cell wash buffer
Magnesium Chloride Solution, 1 MSigma-AldrichM1028Nucleus Lysis buffer
Nonidet P40 Substitute (nonionic detergent)Sigma-Aldrich74385Nucleus Lysis buffer
Nuclease free water (not DEPC-treated)InvitrogenAM9937Nucleus Lysis buffer
Protector RNase Inhibitor, 40 U/µLSigma-Aldrich3335399001Nucleus Lysis buffer
Sodium Chloride Solution, 5 MSigma-Aldrich59222CNucleus Lysis buffer
Trizma Hydrochloride Solution, 1 M, pH 7.4Sigma-AldrichT2194Nucleus Lysis buffer
Bovine Serum Albumin 10%Sigma-AldrichA1595-50MLNucleus wash
DPBS (Ca2+, Mg2+free)Gibco14190-169Nucleus wash
Protector RNase Inhibitor,40 U/µLSigma-Aldrich3335399001Nucleus wash
Bovine Serum Albumin 10%Sigma-AldrichA1595-50MLST staining buffer (ST-SB)
Calcium chloride solution, 1 MSigma-Aldrich21115-100MLST staining buffer (ST-SB)
Magnesium Chloride Solution, 1 MSigma-AldrichM1028ST staining buffer (ST-SB)
Nuclease free water (not DEPC treated)InvitrogenAM9937ST staining buffer (ST-SB)
Sodium Chloride Solution, 5MSigma-Aldrich59222CST staining buffer (ST-SB)
Trizma Hydrochloride Solution, 1M, pH 7.4Sigma-AldrichT2194ST staining buffer (ST-SB)
Tween-20Merck Millipore822184ST staining buffer (ST-SB)
TotalSeq-A0451 anti-Nuclear Pore Complex Proteins Hashtag 1 AntibodyBiolegend682205Hashtag antibody
TotalSeq-A0452 anti-Nuclear Pore Complex Proteins Hashtag 2 AntibodyBiolegend682207Hashtag antibody
TotalSeq-A0453 anti-Nuclear Pore Complex Proteins Hashtag 3 AntibodyBiolegend682209Hashtag antibody
TotalSeq-A0461 anti-Nuclear Pore Complex Proteins Hashtag 11 AntibodyBiolegend682225Hashtag antibody
TotalSeq-A0462 anti-Nuclear Pore Complex Proteins Hashtag 12 AntibodyBiolegend682227Hashtag antibody
TotalSeq-A0463 anti-Nuclear Pore Complex Proteins Hashtag 13 AntibodyBiolegend682229Hashtag antibody
TotalSeq-A0464 anti-Nuclear Pore Complex Proteins Hashtag 14 AntibodyBiolegend682231Hashtag antibody
TotalSeq-A0465 anti-Nuclear Pore Complex Proteins Hashtag 15 AntibodyBiolegend682233Hashtag antibody
TruStain FcX (human)Biolegend422302FC receptor blocking solution
Equipment and consumables
Bright-Line HemacytometerMerckZ359629-1EA
Centrifuge 5702/R A-4-38Eppendorf EP022629905
CoolCell LX Cell Freezing ContainerCorningCLS432003-1EA
CryovialThermo Scientific479-6840
DNA LoBind 0.5 mL Eppendorf tubeEppendorfEP0030108035-250EA
Eppendorf Safe-Lock Tubes 1.5 mLEppendorf30121872
Falcon 35 mm Not TC-treated Petri dishCorning351008
Falcon 15 mL Conical Centrifuge TubesFisher scientific10773501
Forceps Dumont #5Fine science tools11252-40
Hardened Fine ScissorsFine science tools14091-09
 Ice Pan, rectangular 4 L OrangeCorningCLS432106-1EA
Leica MS5LeicaMicroscope
Moria MC50 ScissorsFine science tools15370-50
Noyes Spring ScissorsFine science tools15012-12
Olympus CK2 ULWCDOlympusMicroscope
P10GilsonF144802
P1000GilsonF123602
P200GilsonF123601
Preseparation Filters (30 µm)Miltenyi biotecMiltenyi biotec130-041-407
Shaking water bathGFL1083
Silicon plateRubberBV3530Dissection board
Software and packages
Cell rangerV4.0.0
R programmingV4.1.1
R sudioV1.3.1073
SeuratV4.0
tydiverseV1.3.1
Animals
B6.Cg-Tg(Wnt1-cre)2Sor/J mouseThe Jackson LaboratoryJAX stock #022501
B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mouseThe Jackson LaboratoryJAX stock #007576
C57BL/6J miceCharles River
Code for the data analysis
https://github.com/rubenmethorst/Single-cell-SCG_JoVE

References

  1. McCorry, L. K. Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education. 71 (4), 78 (2007).
  2. Li, C. -. Y., Li, Y. -. G. Cardiac sympathetic nerve sprouting and susceptib....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Nucleus IsolationMultiplexingBarcoded AntibodiesSingle nucleus RNA SequencingSympathetic GangliaCardiac NeuronsTissue DissectionSuperior Cervical GangliaStellate GangliaTrypsin EDTA SolutionNeuronal SamplesBiological ArchitectureHealth And DiseaseDissection Protocol

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved