A subscription to JoVE is required to view this content. Sign in or start your free trial.
We developed an intronic microRNA biogenesis reporter assay to be used in cells in vitro with four plasmids: one with intronic miRNA, one with the target, one to overexpress a regulatory protein, and one for Renilla luciferase. The miRNA was processed and could control luciferase expression by binding to the target sequence.
MicroRNAs (miRNAs) are short RNA molecules that are widespread in eukaryotes. Most miRNAs are transcribed from introns, and their maturation involves different RNA-binding proteins in the nucleus. Mature miRNAs frequently mediate gene silencing, and this has become an important tool for comprehending post-transcriptional events. Besides that, it can be explored as a promising methodology for gene therapies. However, there is currently a lack of direct methods for assessing miRNA expression in mammalian cell cultures. Here, we describe an efficient and simple method that aids in determining miRNA biogenesis and maturation through confirmation of its interaction with target sequences. Also, this system allows the separation of exogenous miRNA maturation from its endogenous activity using a doxycycline-inducible promoter capable of controlling primary miRNA (pri-miRNA) transcription with high efficiency and low cost. This tool also allows modulation with RNA-binding proteins in a separate plasmid. In addition to its use with a variety of different miRNAs and their respective targets, it can be adapted to different cell lines, provided these are amenable to transfection.
Precursor mRNA splicing is an important process for gene expression regulation in eukaryotes1. The removal of introns and the union of exons in mature RNA is catalyzed by the spliceosome, a 2 megadalton ribonucleoprotein complex composed of 5 snRNAs (U1, U2, U4, U5, and U6) along with more than 100 proteins2,3. The splicing reaction occurs co-transcriptionally, and the spliceosome is assembled at each new intron guided by the recognition of conserved splice sites at exon-intron boundaries and within the intron4. Different introns might have different splicing rates despite the remarkable conservation of the spliceosome complex and its components. In addition to the differences in splice site conservation, regulatory sequences distributed on introns and exons can guide RNA-binding proteins (RBP) and stimulate or repress splicing5,6. HuR is a ubiquitously expressed RBP and is an important factor to control mRNA stability7. Previous results from our group showed that HuR can bind to introns containing miRNAs, indicating this protein might be an important factor to facilitate miRNA processing and maturation, also leading to the generation of alternative splicing isoforms6,8,9.
Many microRNAs (miRNAs) are coded from intronic sequences. Whereas some are part of the intron, others are known as "mirtrons" and are formed by the entire intron10,11. miRNAs are short non-coding RNAs, ranging from 18 to 24 nucleotides in length12. Their mature sequence shows partial or total complementarity with target sequences in mRNAs, therefore affecting translation and/or mRNA decay rates. The combinations of miRNAs and targets drive the cell to different outcomes. Several miRNAs can drive cells to pro- or anti-tumoral phenotypes13. Oncogenic miRNAs usually target mRNAs that trigger a suppressive characteristic, leading to increased cellular proliferation, migration, and invasion14. On the other hand, tumor-suppressive miRNAs might target oncogenic mRNAs or mRNAs related to increased cell proliferation.
The processing and maturation of miRNAs are also dependent on their origin. Most intronic miRNAs are processed with the participation of the microprocessor, formed by the ribonuclease Drosha and protein co-factors12. Mirtrons are processed with the activity of the spliceosome independently of Drosha15. Considering the high frequency of miRNAs found within introns, we hypothesized that RNA-binding proteins involved with splicing could also facilitate the processing and maturation of these miRNAs. Notably, the RBP hnRNP A2/B1 has already been associated with the microprocessor and miRNA biogenesis16.
We have previously reported that several RNA-binding proteins, such as hnRNPs and HuR, are associated with intronic miRNAs by mass spectrometry17. HuR's (ELAVL1) association with miRNAs from the miR-17-92 intronic cluster was confirmed using immunoprecipitation and in silico analysis9. miR-17-92 is an intronic miRNA cluster composed of six miRNAs with increased expression in different cancers18,19. This cluster is also known as "oncomiR-1" and is composed of miR-17, miR-18a, miR-19a, miR-20, miR-19b, and miR-92a. miR-19a and miR-19b are among the most oncogenic miRNAs of this cluster19. The increased expression of HuR stimulates miR-19a and miR-19b synthesis9. Since intronic regions flanking this cluster are associated with HuR, we developed a method to investigate if this protein could regulate miR-19a and miR-19b expression and maturation. One important prediction of our hypothesis was that, as a regulatory protein, HuR could facilitate miRNA biogenesis, leading to phenotypic alterations. One possibility was that miRNAs were processed by the stimulation of HuR but would not be mature and functional and, therefore, the effects of the protein would not directly impact the phenotype. Therefore, we developed a splicing reporter assay to investigate whether an RBP such as HuR could affect the biogenesis and maturation of an intronic miRNA. By confirming miRNA processing and maturation, our assay shows the interaction with the target sequence and the generation of a mature and functional miRNA. In our assay, we couple the expression of an intronic miRNA cluster with a luciferase plasmid to check for miRNA target-binding in cultured cells.
An overview of the protocol described here is depicted in Figure 1.
1. Plasmid construction
2. Cell culture
NOTE: The HeLa-Cre cell line was a gift from Dr. E. Makeyev21, and the papillary thyroid cancer cell (BCPAP) was kindly provided by Dr. Massimo Santoro (University "Federico II", Naples, Italy). HeLa cell, papillary thyroid cancer cell (BCPAP), and HEK-293T were used to overexpress HuR.
3. HuR overexpression
4. Total RNA isolation
5. Determination of total RNA concentration and quality
6. Reverse transcription
7. Quantitative PCR
8. The reporter assay
Our initial hypothesis was that HuR could facilitate intronic miRNA biogenesis by binding to its pre-miRNA sequence. Thus, the connection of HuR expression and miR-17-92 cluster biogenesis could point to a new mechanism governing the maturation of these miRNAs. Overexpression of HuR upon transfection of pFLAG-HuR was confirmed in three different cell lines: HeLa, BCPAP, and HEK-293T (Figure 2). As controls, untransfected cells and cells transfected with empty pFLAG vectors were used...
Pre-mRNA splicing is an important process for gene expression regulation, and its control can trigger strong effects on cell phenotypic modifications22,23. More than 70% of miRNAs are transcribed from introns in humans, and we hypothesized that their processing and maturation could be facilitated by splicing regulatory proteins24,25. We developed a method to analyze intronic miRNA processing and function ...
The authors have no conflicts of interest.
The authors are grateful to E. Makeyev (Nanyang Technological University, Singapore) for the HeLa-Cre cells and pRD-RIPE and pCAGGS-Cre plasmids. We thank Edna Kimura, Carolina Purcell Goes, Gisela Ramos, Lucia Rossetti Lopes, and Anselmo Moriscot for their support.
Name | Company | Catalog Number | Comments |
Recombinant DNA | |||
pCAGGS-Cre (Cre- encoding plasmid) | A kind gift from E. Makeyev from Khandelia et al., 2011 | ||
pFLAG-HuR | Generated during this work | ||
pmiRGLO-RAP-IB | Generated during this work | ||
pmiRGLO-scrambled | Generated during this work | ||
pRD-miR-17-92 | Generated during this work | ||
pRD-RIPE-donor | A kind gift from E. Makeyev from Khandelia et al., 2011 | ||
pTK-Renilla | Promega | E2241 | |
Antibodies | |||
anti-B-actin | Sigma Aldrich | A5316 | |
anti-HuR | Cell Signaling | mAb 12582 | |
IRDye 680CW Goat anti-mouse IgG | Li-Cor Biosciences | 926-68070 | |
IRDye 800CW Goat anti-rabbit IgG | Li-Cor Biosciences | 929-70020 | |
Experimental Models: Cell Lines | |||
HeLa-Cre | A kind gift from E. Makeyev from Khandelia et al., 2011 | ||
HeLa-Cre miR17-92 | Generated during this work | ||
HeLa-Cre miR17-92-HuR | Generated during this work | ||
HeLa-Cre miR17-92-HuR-luc | Generated during this work | ||
HeLa-Cre miR17-92-luc | Generated during this work | ||
HeLa-Cre miR17-92-scrambled | Generated during this work | ||
Chemicals and Peptides | |||
DMEM/high-glucose | Thermo Fisher Scientific | 12800-017 | |
Doxycycline | BioBasic | MB719150 | |
Dual-Glo Luciferase Assay System | Promega | E2940 | |
EcoRI | Thermo Fisher Scientific | ER0271 | |
EcoRV | Thermo Fisher Scientific | ER0301 | |
Geneticin | Thermo Fisher Scientific | E859-EG | |
L-glutamine | Life Technologies | ||
Opti-MEM I | Life Technologies | 31985-070 | |
pFLAG-CMV™-3 Expression Vector | Sigma Aldrich | E6783 | |
pGEM-T | Promega | A3600 | |
Platinum Taq DNA polymerase | Thermo Fisher Scientific | 10966-030 | |
pmiR-GLO | Promega | E1330 | |
Puromycin | Sigma Aldrich | P8833 | |
RNAse OUT | Thermo Fisher Scientific | 752899 | |
SuperScript IV kit | Thermo Fisher Scientific | 18091050 | |
Trizol-LS reagent | Thermo Fisher | 10296-028 | |
trypsin/EDTA 10X | Life Technologies | 15400-054 | |
XbaI | Thermo Fisher Scientific | 10131035 | |
XhoI | Promega | R616A | |
Oligonucleotides | |||
forward RAP-1B pmiRGLO | Exxtend | TCGAGTAGCGGCCGCTAGTAAG CTACTATATCAGTTTGCACAT | |
reverse RAP-1B pmiRGLO | Exxtend | CTAGATGTGCAAACTGATATAGT AGCTTACTAGCGGCCGCTAC | |
forward scrambled pmiRGLO | Exxtend | TCGAGTAGCGGCCGCTAGTAA GCTACTATATCAGGGGTAAAAT | |
reverse scrambled pmiRGLO | Exxtend | CTAGATTTTACCCCTGATATAGT AGCTTACTAGCGGCCGCTAC | |
forward HuR pFLAG | Exxtend | GCCGCGAATTCAATGTCTAAT GGTTATGAAGAC | |
reverse HuR pFLAG | Exxtend | GCGCTGATATCGTTATTTGTG GGACTTGTTGG | |
forward pre-miR-1792 pRD-RIPE | Exxtend | ATCCTCGAGAATTCCCATTAG GGATTATGCTGAG | |
reverse pre-miR-1792 pRD-RIPE | Exxtend | ACTAAGCTTGATATCATCTTG TACATTTAACAGTG | |
forward snRNA U6 (RNU6B) | Exxtend | CTCGCTTCGGCAGCACATATAC | |
reverse snRNA U6 (RNU6B) | Exxtend | GGAACGCTTCACGAATTTGCGTG | |
forward B-Actin qPCR | Exxtend | ACCTTCTACAATGAGCTGCG | |
reverse B-Actin qPCR | Exxtend | CCTGGATAGCAACGTACATGG | |
forward HuR qPCR | Exxtend | ATCCTCTGGCAGATGTTTGG | |
reverse HuR qPCR | Exxtend | CATCGCGGCTTCTTCATAGT | |
forward pre-miR-1792 qPCR | Exxtend | GTGCTCGAGACGAATTCGTCA GAATAATGTCAAAGTG | |
reverse pre-miR-1792 qPCR | Exxtend | TCCAAGCTTAAGATATCCCAAAC TCAACAGGCCG | |
Software and Algorithms | |||
Prism 8 for Mac OS X | Graphpad | https://www.graphpad.com | |
ImageJ | National Institutes of Health | http://imagej.nih.gov/ij |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved