JoVE Logo

Sign In

Abstract

Biology

A Fluorescence-Based Assay of Membrane Potential for High-Throughput Functional Study of Two Endogenous Ion Channels in Two Epithelial Cell Lines

Published: June 22nd, 2022

DOI:

10.3791/63528

1Molecular Medicine, Hospital for Sick Children, 2Cell Biology, Hospital for Sick Children, 3Department of Physiology, University of Toronto, 4Department of Paediatrics, University of Toronto, 5Department of Biochemistry, University of Toronto

Abstract

Fluorescence-based studies are suitable for high-throughput plate reader assays of cells in culture. They have been commonly employed for drug discovery campaigns targeting recombinant ion channel proteins overexpressed in cells such as HEK-293 cells. However, there is increasing emphasis on the use of tissue-relevant cell lines for studying the effects of small molecule interventions. The following protocol describes the adaptation of a fluorescence-based membrane potential assay for the study of ion channels endogenously expressed in epithelial cell lines. The membrane potential assay details a high-throughput assay for chloride channel activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in two commonly studied epithelial cell lines, Caco-2 and Calu-3. In addition, this paper describes a novel application of this system to measure the activity of the Epithelial Sodium Channel (ENaC) in a high-throughput format in the same epithelial cell lines. Together, these fluorescence-based assays provide a robust and flexible platform for studying small molecule modulators, targeting two epithelial channels in a relevant cellular context.

Explore More Videos

Keywords Fluorescence based Assay

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved