A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol describes the isolation of microRNAs from tick salivary glands and purified extracellular vesicles. This is a universal procedure that combines commonly used reagents and supplies. The method also allows the use of a small number of ticks, resulting in quality microRNAs that can be readily sequenced.
Ticks are important ectoparasites that can vector multiple pathogens. The salivary glands of ticks are essential for feeding as their saliva contains many effectors with pharmaceutical properties that can diminish host immune responses and enhance pathogen transmission. One group of such effectors are microRNAs (miRNAs). miRNAs are short non-coding sequences that regulate host gene expression at the tick-host interface and within the organs of the tick. These small RNAs are transported in the tick saliva via extracellular vesicles (EVs), which serve inter-and intracellular communication. Vesicles containing miRNAs have been identified in the saliva of ticks. However, little is known about the roles and profiles of the miRNAs in tick salivary vesicles and glands. Furthermore, the study of vesicles and miRNAs in tick saliva requires tedious procedures to collect tick saliva. This protocol aims to develop and validate a method for isolating miRNAs from purified extracellular vesicles produced by ex vivo organ cultures. The materials and methodology needed to extract miRNAs from extracellular vesicles and tick salivary glands are described herein.
Ticks are ectoparasites that vector many pathogens to wildlife, livestock, humans, and their pets1,2. Tick feeding results in significant economic loss by causing damage to hide, reducing weight and milk production due to severe anemia, and the transmission of potentially deadly disease-causing pathogens1,3,4,5. Current control practices for managing tick populations are focused on the use of acaricides. Nevertheless, the continuous emergence of acaricide resistance in ticks parasiti....
All animal experiments were performed following animal usage protocol (AUP#2020-0026) approved by the institutional animal care and use committee (AICUC) at Texas A&M University. The tick species, Ixodes scapularis and Rhipicephalus (Boophilus) microplus, and New Zealand Male White Rabbits, 42-72 days of age, were used for the present study. I. scapularis was received from the Center for Disease Control (CDC) and Oklahoma State University, certified as pathogen-free. R. microp.......
The present protocol provides a detailed methodology to extract miRNAs from salivary glands and EVs. According to the results, this protocol is effective for the isolation of miRNA from adults of two different tick species, I. scapularis and R. microplus, and can potentially be used in other tick species as well. The EVs concentration (particles/mL) was measured via NTA. For R. microplus, each gender and life stage contained three biological replicates measured in three technical repli.......
The current protocol provides a detailed methodology for extracting miRNA from salivary glands and EVs. However, there are important considerations, all of which are detailed in the notes for each section of this protocol. The capsule and mesh netting must be secured during tick feeding to prevent ticks from escaping. The capsule preparation and placement are described in Koga et al.40. Several replicates of the tick dissections need to be done if an unsuitable sample is discarded. Additionally, s.......
We are greatly appreciative for the assistance from the Cattle Fever tick Laboratory in Edinburg, Texas. We would like to thank Michael Moses, Jason Tidwell, James Hellums, Cesario Agado, and Homer Vasquez. We would also like to acknowledge the assistance of Sarah Sharpton, Elizabeth Lohstroh, Amy Filip, Kelsey Johnson, Kelli Kochcan, Andrew Hillhouse, Charluz Arocho Rosario, and Stephanie Guzman Valencia throughout the project. We would like to thank the Texas A&M Aggie Women in Entomology (AWE) Writing Group for their help and advice during the writing of this manuscript. The following reagents were provided by Centers for Disease Control and Prevention for dist....
Name | Company | Catalog Number | Comments |
0.22 µm syringe filter | GenClone | 25-240 | |
1 µm nylon syringe filter | Tisch Scientific | 283129028 | |
1 inch black adhesive | Amazon | B00FQ937NM | Capsule |
10 mL needeless syringe | Exelint | 26265 | |
3' and 5' Adapters | Illumina | 20024906 | NEXTFLEX Small RNA-Seq Kit |
4 mm vannas scissors | Fine Science Tools | 15000-08 | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid | Sigma-Aldrich | 1.1523 | |
70Ti rotor | Beckman Coulter | 337922 | |
Amphotericin | Corning | 30-003-CF | |
Beads | Illumina | 20024906 | NEXTFLEX Small RNA-Seq Kit |
Bioanalyzer | Agilent | G2939BA | |
Bioanalyzer kit | Agilent | 5067-1513 | |
Centrifuge 5425 | Eppendorf | ||
Chloroform | Macron | UN1888 | |
Cyverse Discovery Enviornment | https://cyverse.org/discovery-environment | ||
Dissecting microscope | Nikon | SMZ745 | |
Double-sideded carpet tape | amazon | ‎286373 | |
Falcon Tubes, 50 mL | VWR | 21008-940 | |
Fetal Bovine Serum | Gibco | FBS-02-0050 | |
fine forceps | Excelta | 5-S-SE | |
Foamies, 2 mm | Amazon | B004M5QGBQ | Capsule |
Isoflurane | Phoenix Pharmaceuticals manfactured | 193.33165.3 | |
Ixodes scaplaris | CDC, Oklahoma State University | ||
L15C300 medium | In-lab | ||
lipoprotein-cholesterol concentrate | MPI | 02191476-CF | |
Microscope slide | VWR | 10118-596 | |
miRDeep2 | https://github.com/rajewsky-lab/mirdeep2 | ||
M-MuLV Reverse Transcriptase | Illumina | 20024906 | NEXTFLEX Small RNA-Seq Kit |
molecular grade ethanol | Fischer Bioreagents | UN1170 | |
multi-well 24 well tissue culture treated plate | Corning | 353047 | |
Nanopaticle Tracking Analyzer machine | Malvern Panalytical | ||
Nanosep with 300K Omega filter | Pall Corporation | OD3003C33 | |
NEXTFLEX Small RNA-Seq Kit v3 | PerkinElmer | ||
NextSeq 500/550 High Output Kit (75 cycles) | Illumina | 20024906 | |
Optima XPN 90 Ultracentrifuge | Beckman Coulter | ||
Penicillin | Thermofischer Scientific | ICN19453780 | |
Pippettes | Ependorff | ||
polycarbonate centrifuge bottle | Beckman Coulter | 355618 | |
Qiagen miRNeasy kit | Qiagen | 217084 | |
QIAzol lysis reagent | Qiagen | 79306 | |
Qubit | Thermofisher | Q32880 | |
Qubit kit | Thermofisher | Q10212 | |
Rabbits | Charles River | ||
Reverse Universal Primer | Illumina | 20024906 | NEXTFLEX Small RNA-Seq Kit |
Rhipicephalus microplus | Cattle Fever Tick Research Labratoty | ||
Rifampicin | Fischer Bioreagents | 215544 | |
RNAlater | Invitrogen | 833280 | |
RNAse free tubes | VWR | 87003294 | |
RNAse inhibitor | Thermo Fischer | 11111729 | |
RNAse/DNAse free water | Qiagen | 217084 | |
RNeasy Minelute spin column | Qiagen | 217084 | Qiagen miRNeasy kit |
RPE Buffer | Qiagen | 217084 | Qiagen miRNeasy kit |
RT Buffer | Illumina | 20024906 | NEXTFLEX Small RNA-seq kit |
RT Forward Primer | Illumina | 20024906 | NEXTFLEX Small RNA-seq kit |
RTE Buffer | Qiagen | 217084 | Qiagen miRNeasy kit |
Sodium bicarbonate | Sigma-Aldrich | S6014-25G | |
Sorvall ST16 | Thermo Fischer | 75004380 | |
Sterilized Gauze sponges | Covidien | 2187 | |
Sterilized PBS | Sigma | RNBK0694 | |
streptomycin | thermofischer Scientific | 15240062 | |
TapeStation | Aligent | G2991BA | |
Tear Mender Instant Fabric and Leather Adhesive | Amazon | 7.42836E+11 | Capsule |
Tissue Adhesive | 3M VetBond | ||
Triple Antibiotics | dechra | 17033-122-75 | |
Tryptose phosphate broth | BD | BD 260300 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved