JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biochemistry

Advancing High-Resolution Imaging of Virus Assemblies in Liquid and Ice

Published: July 20th, 2022

DOI:

10.3791/63856

1Department of Biomedical Engineering, Pennsylvania State University, 2Department of Materials Science and Engineering, McMaster University, 3Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, 4Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, 5Materials Research Institute, Pennsylvania State University, 6Huck Institutes of the Life Sciences, Pennsylvania State University, 7Applications team, Direct Electron, 8Application Scientist, Protochips, Inc., 9Department of Biology, Wake Forest University

* These authors contributed equally

Abstract

Interest in liquid-electron microscopy (liquid-EM) has skyrocketed in recent years as scientists can now observe real-time processes at the nanoscale. It is extremely desirable to pair high-resolution cryo-EM information with dynamic observations as many events occur at rapid timescales - in the millisecond range or faster. Improved knowledge of flexible structures can also assist in the design of novel reagents to combat emerging pathogens, such as SARS-CoV-2. More importantly, viewing biological materials in a fluid environment provides a unique glimpse of their performance in the human body. Presented here are newly developed methods to investigate the nanoscale properties of virus assemblies in liquid and vitreous ice. To accomplish this goal, well-defined samples were used as model systems. Side-by-side comparisons of sample preparation methods and representative structural information are presented. Sub-nanometer features are shown for structures resolved in the range of ~3.5-Å-10 Å. Other recent results that support this complementary framework include dynamic insights of vaccine candidates and antibody-based therapies imaged in liquid. Overall, these correlative applications advance our ability to visualize molecular dynamics, providing a unique context for their use in human health and disease.

Explore More Videos

Keywords Liquid Electron Microscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved