A subscription to JoVE is required to view this content. Sign in or start your free trial.
A protocol for fluorescent, flow cytometric quantification of senescent cancer cells induced by chemotherapy drugs in cell culture or in murine tumor models is presented. Optional procedures include co-immunostaining, sample fixation to facilitate large batch or time point analysis, and the enrichment of viable senescent cells by flow cytometric sorting.
Cellular senescence is a state of proliferative arrest induced by biological damage that normally accrues over years in aging cells but may also emerge rapidly in tumor cells as a response to damage induced by various cancer treatments. Tumor cell senescence is generally considered undesirable, as senescent cells become resistant to death and block tumor remission while exacerbating tumor malignancy and treatment resistance. Therefore, the identification of senescent tumor cells is of ongoing interest to the cancer research community. Various senescence assays exist, many based on the activity of the well-known senescence marker, senescence-associated beta-galactosidase (SA-β-Gal).
Typically, the SA-β-Gal assay is performed using a chromogenic substrate (X-Gal) on fixed cells, with the slow and subjective enumeration of "blue" senescent cells by light microscopy. Improved assays using cell-permeant, fluorescent SA-β-Gal substrates, including C12-FDG (green) and DDAO-Galactoside (DDAOG; far-red), have enabled the analysis of living cells and allowed the use of high-throughput fluorescent analysis platforms, including flow cytometers. C12-FDG is a well-documented probe for SA-β-Gal, but its green fluorescent emission overlaps with intrinsic cellular autofluorescence (AF) that arises during senescence due to the accumulation of lipofuscin aggregates. By utilizing the far-red SA-β-Gal probe DDAOG, green cellular autofluorescence can be used as a secondary parameter to confirm senescence, adding reliability to the assay. The remaining fluorescence channels can be used for cell viability staining or optional fluorescent immunolabeling.
Using flow cytometry, we demonstrate the use of DDAOG and lipofuscin autofluorescence as a dual-parameter assay for the identification of senescent tumor cells. Quantitation of the percentage of viable senescent cells is performed. If desired, an optional immunolabeling step may be included to evaluate cell surface antigens of interest. Identified senescent cells can also be flow cytometrically sorted and collected for downstream analysis. Collected senescent cells can be immediately lysed (e.g., for immunoassays or 'omics analysis) or further cultured.
Senescent cells normally accumulate in organisms over years during normal biological aging but may also develop rapidly in tumor cells as a response to damage induced by various cancer treatments, including radiation and chemotherapy. Though no longer proliferating, therapy-induced senescent (TIS) tumor cells may contribute to treatment resistance and drive recurrence1,2,3. Factors secreted by TIS cells can exacerbate tumor malignancy by promoting immune evasion or metastasis4,5. TIS cells develop complex, context-spe....
All animal work described was approved by the Institutional Animal Care and Use Committee at the University of Chicago.
1. Preparation and storage of stock solutions
NOTE: If cells will be flow-sorted, all solutions should be prepared using sterile techniques and filtered through a 0.22 µm filter device.
Several experiments were performed to demonstrate the comparability of DDAOG to X-Gal and C12-FDG for the detection of senescence by SA-β-Gal. First, X-Gal was used to stain senescent B16-F10 melanoma cells induced by ETO (Figure 2A). An intense blue color developed in a subset of ETO-treated cells, while other cells exhibited less intense blue staining. Morphology was enlarged in most ETO-treated cells. Staining ETO-treated cells with fluorescent SA-β-Gal substrate C
Over the last decade or so, flow cytometry has become a more common assay platform in cancer research due to the emerging popularity of tumor immunology, the development of lower-cost flow cytometers, and the improvement of shared instrumentation facilities at academic institutions. Multicolor assays are now standard, as most newer instruments are equipped with violet, blue-green, and red to far-red optical arrays. Thus, this DDAOG protocol is likely to be compatible with a wide array of flow cytometers. Of course, any f.......
We thank the Cytometry and Antibody Core Facility at the University of Chicago for support on flow cytometry instrumentation. The Animal Research Center at the University of Chicago provided animal housing.
....Name | Company | Catalog Number | Comments |
Bafilomycin A1 | Research Products International | B40500 | |
Bleomycin sulfate | Cayman | 13877 | |
Bovine serum albumin (BSA) | US Biological | A1380 | |
Calcein Violet 450 AM viability dye | ThermoFisher Scientific | 65-0854-39 | eBioscience |
DPP4 antibody, PE conjugate | Biolegend | 137803 | Clone H194-112 |
Cell line: A549 human lung adenocarcinoma | American Type Culture Collection | CCL-185 | |
Cell line: B16-F10 mouse melanoma | American Type Culture Collection | CRL-6475 | |
Cell scraper | Corning | 3008 | |
Cell strainers, 100 µm | Falcon | 352360 | |
DDAO-Galactoside | Life Technologies | D6488 | |
DMEM medium 1x | Life Technologies | 11960-069 | |
DMSO | Sigma | D2438 | |
DNAse I | Sigma | DN25 | |
Doxorubicin, hydrochloride injection (USP) | Pfizer | NDC 0069-3032-20 | |
Doxorubicin, PEGylated liposomal (USP) | Sun Pharmaceutical | NDC 47335-049-40 | |
EDTA 0.5 M | Life Technologies | 15575-038 | |
Etoposide | Cayman | 12092 | |
FBS | Omega | FB-11 | |
Fc receptor blocking reagent | Biolegend | 101320 | Anti-mouse CD16/32 |
Flow cytometer (cell analyzer) | Becton Dickinson (BD) | Various | LSRFortessa |
Flow cytometer (cell sorter) | Becton Dickinson (BD) | Various | FACSAria |
GlutaMax 100x | Life Technologies | 35050061 | |
HEPES 1 M | Lonza | BW17737 | |
Liberase TL | Sigma | 5401020001 | Roche |
Paraformaldehyde 16% | Electron Microscopy Sciences | 15710 | |
Penicillin/Streptomycin 100x | Life Technologies | 15140122 | |
Phosphate buffered saline (PBS) 1x | Corning | MT21031CV | Dulbecco's PBS (without calcium and magnesium) |
Rainbow calibration particles, ultra kit | SpheroTech | UCRP-38-2K | 3.5-3.9 µm, 2E6/mL |
RPMI-1640 medium 1x | Life Technologies | 11875-119 | |
Sodium chloride 0.9% (USP) | Baxter Healthcare Corporation | 2B1324 | |
Software for cytometer data acquisition, "FACSDiva" | Becton Dickinson (BD) | n/a | Contact BD for license |
Software for cytometer data analysis, "FlowJo" | TreeStar | n/a | Contact TreeStar for license |
Trypsin-EDTA 0.25% | Life Technologies | 25200-114 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved