Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Cranial windows have become a ubiquitously implemented surgical technique to allow for intravital imaging in transgenic mice. This protocol describes the use of a surgical robot that performs semi-automated bone drilling of cranial windows and can help reduce surgeon-to-surgeon variability and partially mitigate thermal blood-brain barrier damage.

Abstract

Cranial window surgery allows for the imaging of brain tissue in live mice with the use of multiphoton or other intravital imaging techniques. However, when performing any craniotomy by hand, there is often thermal damage to brain tissue, which is inherently variable surgery-to-surgery and may be dependent on individual surgeon technique. Implementing a surgical robot can standardize surgery and lead to a decrease in thermal damage associated with surgery. In this study, three methods of robotic drilling were tested to evaluate thermal damage: horizontal, point-by-point, and pulsed point-by-point. Horizontal drilling utilizes a continuous drilling schematic, while point-by-point drills several holes encompassing the cranial window. Pulsed point-by-point adds a "2 s on, 2 s off" drilling scheme to allow for cooling in between drilling. Fluorescent imaging of Evans Blue (EB) dye injected intravenously measures damage to brain tissue, while a thermocouple placed under the drilling site measures thermal damage. Thermocouple results indicate a significant decrease in temperature change in the pulsed point-by-point (6.90 °C ± 1.35 °C) group compared to the horizontal (16.66 °C ± 2.08 °C) and point-by-point (18.69 °C ± 1.75 °C) groups. Similarly, the pulsed point-by-point group also showed significantly less EB presence after cranial window drilling compared to the horizontal method, indicating less damage to blood vessels in the brain. Thus, a pulsed point-by-point drilling method appears to be the optimal scheme for reducing thermal damage. A robotic drill is a useful tool to help minimize training, variability, and reduce thermal damage. With the expanding use of multiphoton imaging across research labs, it is important to improve the rigor and reproducibility of results. The methods addressed here will help inform others of how to better use these surgical robots to further advance the field.

Introduction

Cranial windows have become ubiquitously used throughout the fields of neuroscience, neural engineering, and biology to allow for direct visualization and imaging of the cortex in living animals1,2,3,4,5,6,7,8,9,10,11. The powerful combination of transgenic mice and multiphoton imaging has provided ex....

Protocol

All procedures and animal care practices were reviewed, approved by, and performed in accordance with the Louis Stokes Cleveland Department of Veterans Affairs Medical Center Institutional Animal Care and Use Committee.

1. Surgical robot hardware setup

  1. Before surgery, follow the surgical robot (see Table of Materials) manual and guide to set up the hardware and software. Perform frame calibration as detailed in the manual. If the drill or frame are.......

Representative Results

Thermal evaluation
Potential for thermal damage was evaluated by measuring the change in temperature from baseline due to drilling using horizontal (Figure 2A), point-by-point (Figure 2B), and pulsed point-by-point (Figure 2C) methods. Figure 2D displays the experimental setup for obtaining thermal data. A sample size of N = 4 cranial windows was used for thermal evaluation. Horiz.......

Discussion

The use of EB dye and imaging is straightforward, quick, and useful for evaluating vascular damage in the brain for new methods and techniques. Whether using a surgical robot or confirming methods currently done in the lab, it is important to validate surgical methods to isolate the effects of experimental treatments vs. surgical impact and improve animal welfare. A thermocouple setup is also useful in evaluating drilling methods to ensure no heating occurs. Increases in temperature due to bone drilling have been known t.......

Acknowledgements

This study was supported in part by Merit Review Awards GRANT12418820 (Capadona) and GRANTI01RX003420 (Shoffstall/Capadona), and Research Career Scientist Award # GRANT12635707 (Capadona) from the United States (US) Department of Veterans Affairs Rehabilitation Research and Development Service. Additionally, this work was also supported in part by the National Institute of Health, the National Institute of Neurological Disorders and Stroke GRANT12635723 (Capadona), and the National Institute for Biomedical Imaging and Bioengineering, T32EB004314, (Capadona/Kirsch). This material is based upon work supported by the National Science Foundation Graduate Research Fellowsh....

Materials

NameCompanyCatalog NumberComments
1x Phosphate Buffered Saline
Type: Reagent
VWRMRGF-6235For Evans Blue dilution
Aura Software
Type: Tool
Spectral Instruments ImagingOpen access imaging processing software for Lumina imaging sytems
Buprenorphine
Type: Drug
Sourced from Animal Facility
Carbide Drill Bit, 0.6mm (Robot Drill)
Type: Tool
Stoelting58640-1
Carprofen
Type: Drug
Sourced from Animal Facility
Cefazolin
Type: Drug
Sourced from Animal Facility
Evans Blue Dye
Type: Reagent
Millipore SigmaE2129Reconstituted in 1x phosphate-buffered saline
Isoflurane
Type: Drug
Sourced from Animal Facility
IVIS Lumina II
Type: Tool
Perkin ElmerCLS136334IVIS Lumina III currently in place of Lumina II on the market
Jenco Linearizing Thermometer
Type: Tool
Jenco765JFFor Thermocouple setup
Ketamine
Type: Drug
Sourced from Animal Facility
LivingImage
Type: Tool
Perkin ElmerSoftware for IVIS Lumina III
Marcaine
Type: Drug
Sourced from Animal Facility
Neurostar Software
Type: Tool
StoeltingComes with surgical robot purchase
Physiosuite with MouseSTAT® Pulse Oximeter & Heart Rate Monitor
Type: Tool
Kent ScientificPS-03Used to monitor vitals
PrismPlus mice
Type: Animal
Jackson Labortory031478, RRID:IMSR_JAX:031478, Male, ~8 months oldAnimals used for the study
Stoelting Drill and Injection Robot for Motorized Stereotaxic Instruments
Type: Tool
Stoelting58640Main robotic drill with stereotaxic frame
Thermocouple
Type: Tool
TC Direct206-557For Thermocouple setup
USB-6008 Multifunction I/O DAQ
Type: Tool
National InstrumentsUSB-6008For Thermocouple setup
Xylazine
Type: Drug
Sourced from Animal Facility

References

Explore More Articles

Thermal DamageRobot drilled CraniotomyCranial Window SurgeryMiceVascular DamageSurgical RobotCranial InjectionsBregmaMotor CortexAntibioticsAnalgesicsAnesthesiaSterile TechniqueHydrogen PeroxideTail Vein Injection

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved