Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a simple protocol for the isolation and staining of murine bone marrow cells to phenotype hemopoietic stem and progenitor cells along with the supporting niche endothelial and mesenchymal stem cells. A method to enrich cells located in endosteal and central bone marrow areas is also included.

Abstract

The bone marrow (BM) is the soft tissue found within bones where hematopoiesis, the process by which new blood cells are generated, primarily occurs. As such, it contains hematopoietic stem and progenitor cells (HSPCs), as well as supporting stromal cells that contribute to the maintenance and regulation of HSPCs. Hematological and other BM disorders disrupt hematopoiesis by affecting hematopoietic cells directly and/or through the alteration of the BM niche. Here, we describe a method to study hematopoiesis in health and malignancy through the phenotypic analysis of murine BM HSPCs and stromal niche populations by flow cytometry. Our method details the required steps to enrich BM cells in endosteal and central BM fractions, as well as the appropriate gating strategies to identify the two key niche cell types involved in HSPC regulation, endothelial cells and mesenchymal stem cells. The phenotypic analysis proposed here may be combined with mouse mutants, disease models, and functional assays to characterize the HSPC compartment and its niche.

Introduction

Flow cytometry is an invaluable method to characterize and prospectively isolate immune and hematopoietic cells. It is also increasingly being used to analyze stromal and epithelial populations of different tissues. The hematopoietic stem cell (HSC) has unique properties of self-renewal and multipotency. In adult mammals, HSCs primarily reside in the bone marrow (BM), where they receive quiescence and survival signals from the surrounding microenvironment or niche1. HSCs are formally defined according to functional assays2. Nevertheless, several landmark papers have shown the usefulness of flow cytometry to identify HSCs....

Protocol

The animals used in this protocol were housed at the i3S animal facility under specific pathogen-free conditions in a 12 h light-dark cycle and temperature-controlled environment. Free access to standard rodent chow and water was provided. All the animals received humane care according to the criteria outlined by the Federation of European Laboratory Animal Science Associations for the care and handling of laboratory animals (EU Directive 2010/63/EU). The experimental procedure performed on the animals (euthanasia) was a.......

Representative Results

Representative plots of flow cytometry analysis of HSCs and MPPs in a healthy young adult C57Bl/6 mouse are shown in Figure 1. The gating strategy follows the latest harmonizing nomenclature proposed by the ISEH13. When analyzing the impact of a perturbation, such as infection or cancer, it is important to use a control mouse as a reference for normal gates. Fluorescence-minus-one (FMO) controls can be particularly useful to delineate the boundaries of the gates, but .......

Discussion

While the protocol described is simple and easy to perform, special attention should be brought to specific steps. For example, when obtaining flushed BM (step 5.2), the volume or number of times indicated to pass PBS 2% FBS through the inside of the central part of the bone should not be exceeded, as this might result in significant contamination of the flushed sample by endosteal cell populations.

Alterations to the protocol can be made to facilitate its execution by the investigator. In sam.......

Acknowledgements

LM was supported by a grant from the Lady Tata Memorial Trust. JR was supported by a PhD fellowship from Fundação para a Ciência e Tecnologia (FCT; FCT fellowship UI/BD/150833/2021). ML was supported by a PhD fellowship from FCT (FCT fellowship 2021.04773.BD). DD was supported by grants from the American Society of Hematology, the Pablove Foundation, FCT (EXPL/MED-ONC/0522/2021), and the Portuguese Society of Hematology. We thank the support from Dr. Catarina Meireles and Emilia Cardoso of TRACY facility at i3s.

....

Materials

NameCompanyCatalog NumberComments
Alexa Fluor 647 anti-mouse CD54/ICAM-1 antibodyBioLegend116114
APC StreptavidinBioLegend405207
APC/Cyanine7 anti-mouse CD117 (c-kit) antibodyBioLegend105826
APC/Cyanine7 anti-mouse CD45 antibodyBioLegend103116
APC/Cyanine7 anti-mouse TER-119/erythroid cells antibodyBioLegend116223
Biotin anti-mouse CD3ε antibodyBioLegend100304
Biotin anti-mouse CD4 antibodyBioLegend100404
Biotin anti-mouse CD8a antibodyBioLegend100704
Biotin anti-mouse Ly-6G/Ly-6C (Gr-1) antibodyBioLegend108404
Biotin anti-mouse TER-119/erythroid cells antibodyBioLegend116204
Biotin anti-mouse/human CD11b antibodyBioLegend101204
Biotin anti-mouse/human CD45R/B220 antibodyBioLegend103204
Brilliant Violet 510 anti-mouse CD150 (SLAM) antibodyBioLegend115929
Calibrite 2 Color BeadsBD Biosciences349502
Collagenase IVMerck Life ScienceC1889
Dispase IIMerck Life ScienceD4693
Fetal Bovine Serum, qualified, heat inactivated, E.U.-approved, South America OriginThermoFisher Scientific10500064
Hanks' Balanced Salt Solution (HBSS)ThermoFisher Scientific14175095
Mouse Leptin R Biotinylated AntibodyR&D systemsBAF497
NucBlue Fixed Cell Reagent (DAPI)ThermoFisher ScientificR37606DAPI reagent
PE anti-mouse endomucin antibodyThermoFisher Scientific12-5851-82
PE anti-mouse Flk2 (CD135)ThermoFisher Scientific12-1351-82
PE/Cyanine7 anti-mouse CD31 antibodyBioLegend102524
PE/Cyanine7 anti-mouse CD48 antibodyBioLegend103424
PerCP anti-mouse Ly-6A/E (Sca-1) antibodyBioLegend108122
Phosphate-buffered saline (PBS) tabletsMerck Life ScienceP4417
Purified anti-mouse CD16/32 antibodyBioLegend101302
RBC lysis buffer 10xBioLegend420302
Zombie Violet Fixable Viability DyeBioLegend423114fluorescent dye

References

  1. Comazzetto, S., Shen, B., Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Developmental Cell. 56 (13), 1848-1860 (2021).
  2. Purton, L. E., Scadden, D. T. Limiting factors in murine hemato....

Explore More Articles

Flow CytometryMurineBone MarrowHematopoietic Stem CellsHematopoietic Progenitor CellsStromal CellsNicheEndostealCentral Bone MarrowRBC LysisCell Staining

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved