A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a step-by-step approach to identify and address the most common problems associated with atomic force microscopy micro-indentations. We exemplify the emerging problems on native human articular cartilage explants characterized by various degrees of osteoarthritis-driven degeneration.
Without a doubt, atomic force microscopy (AFM) is currently one of the most powerful and useful techniques to assess micro and even nano-cues in the biological field. However, as with any other microscopic approach, methodological challenges can arise. In particular, the characteristics of the sample, sample preparation, type of instrument, and indentation probe can lead to unwanted artifacts. In this protocol, we exemplify these emerging issues on healthy as well as osteoarthritic articular cartilage explants. To this end, we first show via a step-by-step approach how to generate, grade, and visually classify ex vivo articular cartilage discs according to different stages of degeneration by means of large 2D mosaic fluorescence imaging of the whole tissue explants. The major strength of the ex vivo model is that it comprises aged, native, human cartilage that allows the investigation of osteoarthritis-related changes from early onset to progression. In addition, common pitfalls in tissue preparation, as well as the actual AFM procedure together with the subsequent data analysis, are also presented. We show how basic but crucial steps such as sample preparation and processing, topographic sample characteristics caused by advanced degeneration, and sample-tip interaction can impact data acquisition. We also subject to scrutiny the most common problems in AFM and describe, where possible, how to overcome them. Knowledge of these limitations is of the utmost importance for correct data acquisition, interpretation, and, ultimately, the embedding of findings into a broad scientific context.
Due to the ever-shrinking size of electronic devices and systems, the rapid development of micro- and nano-based technology and equipment has gained momentum. One such device is atomic force microscopy (AFM), which can scan biological surfaces and retrieve topographic or biomechanical information at both nano- and micrometer scales1,2. Among its vast features, this tool can be operated as a micro- as well as a nano-indenter to obtain information about the mechanical properties of various biological systems3,4,5,<....
Femoral condyles collected from patients undergoing total knee arthroplasty at the University Hospital of Tübingen, Germany, were used. Only articular cartilage samples from patients with degenerative and posttraumatic joint pathologies were included in this study. Departmental, institutional, as well as local ethical committee approval were obtained before the commencement of the study (Project no.674/2016BO2). Written informed consent was received from all patients before participation.
NOTE: A flowchart of the experiment steps in their chronological order is given in Figure 1.
....
Using a self-made cutting device, we were able to explant and generate small (4 mm x 1 mm) cartilage discs from fresh human condyles containing a single cellular spatial pattern30 of single strings (SS, Figure 2A), double strings (DS), small clusters (SC), big clusters (BC; Figure 2A), and diffuse (Figure 2B). A representative cartilage explant is depicted in Figure 3A. The .......
As a progressive and multifactorial disease, OA triggers structural and functional changes in the articular cartilage.Throughout the course of OA, impairments in mechanical features are accompanied by structural and biochemical changes at the surface of the articular cartilage27,31. The earliest pathological events occurring in OA are proteoglycan depletion coupled with collagen network disruption32,33
The authors have nothing to disclose.
We thank the orthopedic surgeons from the Department of Orthopaedic Surgery of the University Hospital of Tuebingen for providing the tissue samples.
....Name | Company | Catalog Number | Comments |
Amphotericin B | Merck KGaA, Darmstadt, Germany | 1397-89-3 | |
Atomic force microscop (AFM) head | CellHesion 200, Bruker Nano GmbH, Berlin, Germany | JPK00518 | |
Biocompatible sample glue | Bruker Nano GmbH, Berlin, Germany | H000033 | |
Calcein AM | Cayman, Ann Arbor, Michigan, USA | 14948 | Cell membrane permeable stain, used for cartilage disc sorting- top view imaging |
Cantilever | Bruker Nano GmbH, Berlin, Germany | SAA-SPH-5UM | Frequency Nom: 30KHz, k: 0.2N/m, lenght nom: 115μm, width nom: 40μm, geometry: rectangular, cylindrical tip with a 5μm end radius |
Cartilage ctting device | Self-made | n/a | Cutting plastic device containing predefined wholes of 4mmx1mm |
CDD camera integrated in the AFM | The Imaging Source Europe GmbH, Bremen, Germany | DFK 31BF03 | |
CDD camera integrated in the fluorescence microscope | Leica Biosystems, Wetzlar, Germany | DFC3000G | |
Cryotome | Leica Biosystems, Wetzlar, Germany | CM3050S | |
Data Processing Software for the AFM | Bruker Nano GmbH, Berlin, Germany | n/a | Version 5.0.86, can be downloaded for free from the following website https://customers.jpk.com |
Dulbecco's modified Eagle's medium (DMEM) | Gibco, Life Technologies, Darmstadt, Germany | 41966052 | |
Fluorescence Microscope (Leica DMi8) | Leica Biosystems, Wetzlar, Germany | 11889113 | |
Glass block cantiliver holder | Bruker Nano GmbH, Berlin, Germany | SP-90-05 | Extra long glass block with angled faces, designed especially for the use with the JPK PetriDishHeaterTM (Bruker). |
Inverted phase contrast microscope (integrated in the AFM) | AxioObserver D1, Carl Zeiss Microscopy, Jena, Germany | L201306_03 | |
Leibovitz's L-15 medium without L-glutamine | Merck KGaA, Darmstadt, Germany | F1315 | |
Microscope glass slides | Sigma-Aldrich, St. Louis, Missouri, USA | CLS294775X50 | |
Mounting medium With DAPI | ibidi GmbH, Gräfelfing, Germany | 50011 | Mounting media with nuclear DAPI (4′,6-diamidino-2-phenylindole) counterstaining used for cartilage discs side view imaging |
Penicillin-Streptomycin | Sigma-Aldrich, St. Louis, Missouri, USA | P4333 | |
Petri dish heater associated with AFM (Petri Dish Heater) | Bruker Nano GmbH, Berlin, Germany | T-05-0117 | |
Scalpel | Feather Medical Products, Osaka, Japan | 2023-01 | |
Silicone Skirt | Bruker Nano GmbH, Berlin, Germany | n/a | Protective silicone membrane (D55x0.25) which is placed on the basis of the base of the glas block to prevent medium condensation in the AFM head. |
Statistical program - SPSS | IBM, Armonk, New York, USA | SPSS Statistics 22 | Vesion 280.0.0.0 (190) |
Tissue culture dishes | TPP Techno Plastic Products AG, Trasadingen, Switzerland | TPP93040 | |
Tissue-tek O.C.T. Compound | Sakura Finetek, Alphen aan den Rijn, Netherlands | SA6255012 | Water-soluble embedding medium |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved