A subscription to JoVE is required to view this content. Sign in or start your free trial.
The feasibility of whole-genome sequencing (WGS) strategies using benchtop instruments has simplified the genome interrogation of every microbe of public health relevance in a lab setting. A methodological adaptation of the workflow for bacterial WGS is described and a bioinformatics pipeline for analysis is also presented.
Aquaculture is one of the fastest-growing food-producing sectors worldwide and tilapia (Oreochromis spp.) farming constitutes the major freshwater fish variety cultured. Because aquaculture practices are susceptible to microbial contamination derived from anthropogenic sources, extensive antibiotic usage is needed, leading to aquaculture systems becoming an important source of antibiotic-resistant and pathogenic bacteria of clinical relevance such as Escherichia coli (E. coli). Here, the antimicrobial resistance, virulence, and mobilome features of a pathogenic E. coli strain, recovered from inland farmed Oreochromis spp., were elucidated through whole-genome sequencing (WGS) and in silico analysis. Antimicrobial susceptibility testing (AST) and WGS were performed. Furthermore, phylogenetic group, serotype, multilocus sequence typing (MLST), acquired antimicrobial resistance, virulence, plasmid, and prophage content were determined using diverse available web tools. The E. coli isolate only exhibited intermediate susceptibility to ampicillin and was characterized as ONT:H21-B1-ST40 strain by WGS-based typing. Although only a single antimicrobial resistance-related gene was detected [mdf(A)], several virulence-associated genes (VAGs) from the atypical enteropathogenic E. coli (aEPEC) pathotype were identified. Additionally, the cargo of plasmid replicons from large plasmid groups and 18 prophage-associated regions were detected. In conclusion, the WGS characterization of an aEPEC isolate, recovered from a fish farm in Sinaloa, Mexico, allows insights into its pathogenic potential and the possible human health risk of consuming raw aquacultural products. It is necessary to exploit next-generation sequencing (NGS) techniques for studying environmental microorganisms and to adopt a one health framework to learn how health issues originate.
Aquaculture is one of the fastest-growing food-producing sectors worldwide, and its production practices are intended to satisfy the rising food demand for human consumption. Global aquaculture production has tripled from 34 million tonnes (Mt) in 1997 to 112 Mt in 20171. The main species groups, contributing to nearly 75% of the production, were seaweed, carps, bivalves, catfish, and tilapia (Oreochromis spp.)1. However, the appearance of diseases caused by microbial entities is unavoidable because of intensive fish farming, leading to potential economic losses2.
NOTE: The E. coli strain ACM5 was recovered by processing and culturing the fish sample for fecal coliform (FC) determination12. During the fish sampling, fish did not show clinical signs of disease, bacterial, or fungal infection, and a mean temperature of 22.3 °C prevailed. After isolation, the E. coli isolate was subjected to biochemical testing and cryopreserved in brain heart infusion (BHI) broth with DMSO (8% v/v) as a cryoprotective agent.
The antimicrobial susceptibility was determined by the disk diffusion method and interpreted by CLSI breakpoint criteria for 12 antibiotics spanning six distinct antimicrobial classes, that is, aminoglycosides, β-lactams, fluoroquinolones, nitrofurans, phenicols, and folate pathway antagonists. The E. coli ACM5 exhibited sensitivity to all antibiotics except one β-lactam drug. Four β-lactam drugs were tested: ampicillin, carbenicillin, cephalothin, and cefotaxime. Among these, a 14 mm inhibition h.......
This study presents an adaptation of the bacterial WGS workflow using a benchtop sequencer and a pipeline for genomic characterization of a pathogenic E. coli variant. Depending on the sequencing platform used, the turnaround times (TATs) for wet laboratory procedures (bacterial culturing, gDNA extraction, library preparation, and sequencing) and sequence analysis could vary, particularly if slow-growing bacteria are studied. Following the protocol for WGS described above, the TAT was within 4 days, which is com.......
To the National Council of Science and Technology of Mexico (CONACyT by its acronym in Spanish) for the Doctoral scholarship awarded to José Antonio Magaña-Lizárraga [No. 481143].
....Name | Company | Catalog Number | Comments |
Accublock Mini digital dry bath | Labnet | D0100 | Dry bath for incubation of tubes |
Agencourt AMPure XP | Beckman Coulter | A63881 | Magnetic beads in solution for DNA library purification |
DeNovix DS-11 | DeNovix Inc. | UV-Vis spectophotometer to check the quality of the gDNA extracted | |
DNA LoBind Tubes | Eppendorf | 0030108418 | 1.5 mL PCR tubes for DNA library pooling |
DynaMag-2 Magnet | Invitrogen, Thermo Fisher Scientific | 12321D | Magnetic microtube rack used during magnetic beads-based DNA purification |
Gram-negative Multibac I.D. | Diagnostic reseach (Mexico) | PT-35 | Commercial standard antibiotic disks for antimicrobial susceptibility testing |
MiniSeq Mid Output Kit (300-cycles) | Illumina | FC-420-1004 | Reagent cartdrige for paired-end sequencing (2x150) |
MiniSeq System Instrument | Illumina | SY-420-1001 | Benchtop sequencer used for Next-generation sequencing |
MiniSpin centrifuge | Eppendorf | 5452000816 | Standard centrifuge for tubes |
Nextera XT DNA Library Preparation Kit | Illumina | FC-131-1024 | Reagents to perform DNA libraries for sequencing. Includes Box 1 and Box 2 reagents for 24 samples |
Nextera XT Index Kit v2 | Illumina | FC-131-2001, FC-131-2002, FC-131-2003, FC-131-2004 | Index set A, B, C, D |
PhiX Control v3 | Illumina | FC-110-3001 | DNA library control for sequencing |
Precision waterbath | LabCare America | 51221081 | Water bath shaker used for bacterial culture |
Qubit 1X dsDNA HS Assay Kit | Invitrogen, Thermo Fisher Scientific | Q33231 | Reagents for fluorescence-based DNA quantification assay |
Qubit 2.0 Fluorometer | Invitrogen, Thermo Fisher Scientific | Q32866 | Fluorometer used for fluorescence assay |
Qubit Assay tubes | Invitrogen, Thermo Fisher Scientific | Q32856 | 0.5 mL PCR tubes for fluorescence-based DNA quantification assay |
SimpliAmp Thermal Cycler | Applied Biosystems, Thermo Fisher Scientific | A24811 | Thermocycler used for DNA library amplification |
Spectronic GENESYS 10 Vis | Thermo | 335900 | Spectophotometer used for bacterial suspension in antimicrobial susceptibility testing |
ZymoBIOMICS DNA Miniprep Kit | Zymo Research Inc. | D4300 | Kit for genomic DNA extraction (50 preps) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved