A subscription to JoVE is required to view this content. Sign in or start your free trial.
Advancing the study of preantral folliculogenesis requires efficient methods of follicle isolation from single ovaries. Presented here is a streamlined, mechanical protocol for follicle isolation from bovine ovaries using a tissue chopper and homogenizer. This method allows collection of a large number of viable preantral follicles from a single ovary.
Understanding the full process of mammalian folliculogenesis is crucial for improving assisted reproductive technologies in livestock, humans, and endangered species. Research has been mostly limited to antral and large preantral follicles due to difficulty in the isolation of smaller preantral follicles, especially in large mammals such as bovine species. This work presents an efficient approach to retrieve large numbers of small preantral follicles from a single bovine ovary. The cortex of individual bovine ovaries was sliced into 500 µm cubes using a tissue chopper and homogenized for 6 min at 9,000-11,000 rpm using a 10 mm probe. Large debris was separated from the homogenate using a cheese cloth, followed by serial filtration through 300 µm and 40 µm cell strainers. The contents retained in the 40 µm strainer were rinsed into a search dish, where follicles were identified and collected into a drop of medium. The viability of the collected follicles was tested via trypan blue staining. This method enables the isolation of a large number of viable small preantral follicles from a single bovine ovary in approximately 90 min. Importantly, this method is entirely mechanical and avoids the use of enzymes to dissociate the tissue, which may damage the follicles. The follicles obtained using this protocol can be used for downstream applications such as isolation of RNA for RT-qPCR, immunolocalization of specific proteins, and in vitro culture.
Ovarian follicles are the functional units of the ovary, responsible for production of the gamete (oocyte) as well as hormones critical for reproductive function and overall health. Primordial follicles form in the ovary during fetal development or in the neonatal period depending on the species1, and they constitute a female's ovarian reserve. Follicular growth begins with the activation of primordial follicles that leave the resting pool and enter the growing phase. Preantral folliculogenesis, encompassing all follicle stages before antrum development, is a highly dynamic process that requires synchronous morphological and metabolic chang....
Bovine (Bos taurus) ovaries were sourced from a local abattoir and transported to the laboratory within 6 h of collection. Due to the large number of animals processed in the facility, the age, breed, and stage of the estrus cycle of the animals are unknown. Because no live animals were used in these experiments, an approved animal care and use protocol was not required.
1. Preparation of equipment and reagents
Overview and critical steps
Using this protocol, small bovine preantral follicles can be reliably isolated from single ovaries in experimentally relevant numbers. From a total of 30 replicates, an average of 41 follicles were obtained per replicate, with a range of 11 to 135 follicles (Figure 4A). In 14 replicates, the follicles were characterized for stage of development as previously described26 by measuring the follicle diameter using a 1 .......
The present protocol details a reproducible method to retrieve early stage preantral follicles, specifically at primary and early secondary stages, from the bovine ovary. This protocol builds on previous reports20,25,30,34,35,36 and provides optimizations that result in the isolation of a meaningful number of follicles from a.......
This project was partially funded by USDA Multi-state project W4112 and UC Davis Jastro Shields award to SM.
The authors would like to extend their appreciation to Central Valley Meat, Inc. for providing the bovine ovaries used in all experiments. The authors also thank Olivia Silvera for assistance with ovary processing and follicle isolation.
....Name | Company | Catalog Number | Comments |
5-3/4" Soda Lime Disposable Glass Pasteur Pipette | Duran Wheaton Kimble | 63A54 | Pasteur pipette that can be used to dislodge follicles from debris while searching within the petri dish |
16% Paraformaldehyde | Electron Microscopy Sciences | 15710 | Diluted to 4%; fixation of follicles for immunostaining |
20 mL Luer-lock Syringe | Fisher Scientific | Z116882-100EA | Syringe used with the 18 G needle to dislodge follicles from the 40 μm cell strainer |
#21 Sterile Scalpel Blade | Fisher Scientific | 50-365-023 | Used to cut the ovaries and remove the medula |
40 μm Cell Strainer | Fisher Scientific | 22-363-547 | Used to filter the filtrate from the 300 μm cell strainer |
104 mm Plastic Funnel | Fisher Scientific | 10-348C | Size can vary, but ensure the cheese cloth is cut appropriately and that the ovarian homogenate will not spill over |
300 μm Cell Strainer | pluriSelect | 43-50300-03 | Used to filter the filtrate from the cheese cloth |
500 mL Erlenmeyer Flask | Fisher Scientific | FB500500 | Funnel and flask used to catch filtrate from the cheese cloth |
Air-Tite Sterile Needles 18 G | Thermo Fisher Scientific | 14-817-151 | 18 G offers enough pressure to dislodge follicles from the 40 μm cell strainer |
Air-Tite Sterile Needles 27 G 13 mm | Fisher Scientific | 14-817-171 | Needles that can be used to manipulate any debris in which follicles are stuck |
BD Hoechst 33342 Solution | Fisher Scientific | BDB561908 | Fluorescent DNA stain |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | A7030-100G | Component of follicle wash media |
Cheese Cloth | Electron Microscopy Sciences | 71748-00 | First filtering step of the ovarian homogenate meant to remove large tissue debris |
Classic Double Edge Safety Razor Blades | Wilkinson Sword | N/A | Razor blades that fit the best in the McIlwain Tissue Chopper and do not dull quickly |
Donkey-Anti-Rabbit Secondary Antibody, Alexa Fluor 488 | Fisher Scientific | A-21206 | Secondary antibody for immunostaining |
Eisco Latex Pipette Bulbs | Fisher Scientific | S29388 | Rubber bulb to use with Pasteur pipettes |
HEPES Buffer | Sigma-Aldrich | H3375 | Component of follicle wash media |
Homogenizer | VWR | 10032-336 | Homogenize the ovarian tissue to release follicles |
ImageJ/Fiji | NIH | v2.3.1 | Software used for analysis of fluorescence-immunolocalization |
McIlwain Tissue Chopper | Ted Pella | 10184 | Used to cut ovarian tissue small enough for homogenization |
Microscope - Stereoscope | Olympus | SZX2-ILLT | Dissection microscope used for searching and harvesting follicles from the filtrate |
Microscope - Inverted | Nikon | Diaphot 300 | Inverted microscope used for high magnification brightfield visualization of isolated follicles |
Microscope - Inverted | ECHO | Revolve R4 | Inverted microscope used for high magnification brightfield and epifluorescence visualization of isolated follicles |
Mineral Oil | Sigma-Aldrich | M8410-1L | Oil to cover the drops of follicle wash medium to prevent evaporation during searching |
Non-essential Amino Acids (NEAA) | Gibco | 11140-050 | Component of follicle wash medium |
Normal Donkey Serum | Jackson ImmunoResearch | 017-000-001 | Reagent for immunostaining blocking buffer |
Nunc 4-well Dishes for IVF | Thermo Fisher Scientific | 144444 | 4-well dishes for follicle isolation and washing |
Penicillin-Streptomycin Solution 100x | Gibco | 15-140-122 | Component of follicle wash medium |
Petri Dish 60 mm OD x 13.7 mm | Ted Pella | 10184-04 | Petri dish that fits the best in the McIlwain Tissue Chopper |
Phosphate Buffered Saline (PBS) | Fisher Scientific | BP665-1 | Washing buffer for ovaries and follicles |
Plastic Cutting Board | Fisher Scientific | 09-002-24A | Cutting board of sufficient size to safely cut ovaries |
Polyvinylpyrrolidone (PVP) | Fisher Scientific | BP431-100 | Addition of PVP (0.1% w/v) to PBS prevents follicles from sticking to the plate or each other |
ProLong Gold Antifade Mountant | Thermo Fisher Scientific | P36930 | Mounting medium for fluorescently labeled cells or tissue |
Qiagen RNeasy Micro Kit | Qiagen | 74004 | RNA column clean-up kit |
R | The R Foundation | v4.1.2 | Statistical analysis software |
Rabbit-Anti-Human Cx37/GJA4 Polyclonal Antibody | Abcam | ab181701 | Cx37 primary antibody for immunostaining |
RevertAid RT Reverse Transcription Kit | Thermo Fisher Scientific | K1691 | cDNA synthesis kit |
Rstudio | RStudio, PBC | v2021.09.2 | Statistical analysis software |
Sodium Hydroxide Solution (1N/Certified) | Fisher Scientific | SS266-1 | Used to increase media pH to 7.6-7.8 |
Sodium Pyruvate (NaPyr) | Gibco | 11360-070 | Component of follicle wash medium |
Square Petri Dish 100 mm x 15 mm | Thermo Fisher Scientific | 60872-310 | Gridded petri dishes allow for more efficient identification of follicles |
SsoAdvanced Universal SYBR Green Supermix | BioRad | 1725271 | Mastermix for PCR reaction |
Steritop Threaded Bottle Top Filter | Sigma-Aldrich | S2GPT02RE | Used to sterilize follicle wash medium |
SYBR-safe DNA gel stain | Thermo Fisher Scientific | S33102 | Staining to visual PCR products on agarose gel |
TCM199 with Hank’s Salts | Gibco | 12-350-039 | Component of follicle wash medium |
Triton X-100 | Fisher Scientific | BP151-100 | Detergent for immunostaining permeabilization buffer |
Trizol reagent | Thermo Fisher Scientific | 15596026 | RNA isolation reagent |
Trypan Blue Solution, 0.4% | Gibco | 15-250-061 | Used for testing viability of isolated follicles |
Tween 20 | Detergent for immunostaining wash buffer | ||
Warmer Plate Universal | WTA | 20931 | Warm plate to keep follicles at 38.5 °C while searching under the microscope |
Wiretrol II Calibrated Micropipets | Drummond | 50002-005 | Glass micropipettes to manipulate follicles |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved