JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Isolation of Small Preantral Follicles from the Bovine Ovary Using a Combination of Fragmentation, Homogenization, and Serial Filtration

Published: September 27th, 2022

DOI:

10.3791/64423

1Department of Animal Science, University of California Davis

Abstract

Understanding the full process of mammalian folliculogenesis is crucial for improving assisted reproductive technologies in livestock, humans, and endangered species. Research has been mostly limited to antral and large preantral follicles due to difficulty in the isolation of smaller preantral follicles, especially in large mammals such as bovine species. This work presents an efficient approach to retrieve large numbers of small preantral follicles from a single bovine ovary. The cortex of individual bovine ovaries was sliced into 500 µm cubes using a tissue chopper and homogenized for 6 min at 9,000-11,000 rpm using a 10 mm probe. Large debris was separated from the homogenate using a cheese cloth, followed by serial filtration through 300 µm and 40 µm cell strainers. The contents retained in the 40 µm strainer were rinsed into a search dish, where follicles were identified and collected into a drop of medium. The viability of the collected follicles was tested via trypan blue staining. This method enables the isolation of a large number of viable small preantral follicles from a single bovine ovary in approximately 90 min. Importantly, this method is entirely mechanical and avoids the use of enzymes to dissociate the tissue, which may damage the follicles. The follicles obtained using this protocol can be used for downstream applications such as isolation of RNA for RT-qPCR, immunolocalization of specific proteins, and in vitro culture.

Explore More Videos

Keywords Bovine Ovary

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved