Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Giriş
  • Protokol
  • Sonuçlar
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

Burada sunulan, fareler için değişen derecelerde omurilik yaralanması kontüzyon modellerini doğru bir şekilde üretebilen yeni bir otomatik omurilik yaralanması kontüzyon cihazıdır.

Özet

Araba kazaları ve düşmeler gibi travmatik yaralanmalara bağlı omurilik yaralanması (SKY), kalıcı omurilik disfonksiyonu ile ilişkilidir. Omurilik yaralanmasının omuriliğe çarparak kontüzyon modellerinin oluşturulması, klinik pratikte çoğu omurilik yaralanmasına benzer patolojilere neden olmaktadır. Omurilik yaralanmasının doğru, tekrarlanabilir ve kullanışlı hayvan modelleri, omurilik yaralanmasını incelemek için gereklidir. Fareler için yeni bir otomatik omurilik yaralanması kontüzyon cihazı olan Guangzhou Jinan Üniversitesi akıllı omurilik yaralanması sistemi, omurilik yaralanması kontüzyon modellerini doğruluk, tekrarlanabilirlik ve rahatlıkla üretebiliyoruz. Sistem, otomatik bir mobil platform ve gelişmiş yazılımla birleştirilmiş lazer mesafe sensörleri aracılığıyla çeşitli derecelerde omurilik yaralanması modellerini doğru bir şekilde üretir. Bu sistemi üç seviyeli omurilik yaralanması fare modeli oluşturmak için kullandık, Basso fare ölçeği (BMS) puanlarını belirledik ve doğruluğunu ve tekrarlanabilirliğini göstermek için davranışsal ve boyama testleri gerçekleştirdik. Bu cihazı kullanarak yaralanma modellerinin geliştirilmesinin her adımını gösteriyoruz ve standart bir prosedür oluşturuyoruz. Bu yöntem, tekrarlanabilir omurilik yaralanması kontüzyon fare modelleri üretir ve uygun kullanım prosedürleri ile insan manipülasyon faktörlerini azaltır. Geliştirilen hayvan modeli, omurilik yaralanması mekanizmalarını ve ilişkili tedavi yaklaşımlarını incelemek için güvenilirdir.

Giriş

Omurilik yaralanması genellikle yaralanan segmentin altında kalıcı omurilik disfonksiyonuna neden olur. Çoğunlukla trafik kazası ve düşme gibi omurgaya çarpan cisimler ve omurganın aşırı ekstansiyonu sonucu oluşur1. Omurilik yaralanması için etkili tedavi seçeneklerinin sınırlı olması nedeniyle, omurilik yaralanmalarının patogenezinin hayvan modelleri kullanılarak aydınlatılması, uygun tedavi yaklaşımlarının geliştirilmesi için bilgilendirici olacaktır. Omurilik üzerindeki darbenin neden olduğu omurilik yaralanmasının kontüzyon modeli, çoğu klinik omurilik yaralanması vakasına benzer patolojilere sahip hayvan modellerinin geliştirilmesine neden olur 2,3. Bu nedenle, omurilik yaralanması kontüzyonu için doğru, tekrarlanabilir ve uygun hayvan modelleri üretmek önemlidir.

Allen'ın 1911'de omurilik yaralanmasının ilk hayvan modelini icat etmesinden bu yana, omurilik yaralanması hayvan modellerini oluşturmak için aletlerin geliştirilmesinde büyük ilerlemeler olmuştur 4,5. Yaralanma mekanizmalarına göre, omurilik yaralanması modelleri kontüzyon, kompresyon, dikkat dağınıklığı, çıkık, transeksiyon veya kimyasal olarak sınıflandırılır6. Bunlar arasında, omuriliği yerinden çıkarmak ve yaralamak için dış kuvvetleri kullanan kontüzyon modelleri, çoğu omurilik yaralanması hastasının klinik etiyolojisine en yakın olanıdır. Bu nedenle, kontüzyon modeli omurilik yaralanması çalışmalarında birçok araştırmacı tarafından kullanılmıştır 3,7. Omurilik yaralanması kontüzyon modellerini geliştirmek için çeşitli aletler kullanılır. New York Üniversitesi (NYU)-çok merkezli hayvan omurilik yaralanması çalışmaları (MASCIS) çarpma tertibatı, ağırlık düşürme cihazı8 ile omurilik yaralanması kontüzyonları üretir. Birkaç güncellenmiş versiyondan sonra, MASCIS çarpma tertibatı, omurilik yaralanması kontüzyon hayvan modellerini geliştirmek için yaygın olarak kullanılmaktadır9. Bununla birlikte, MASCIS'in darbe çubuğu düşüp omuriliğe çarptığında, omurilik yaralanması modellerinde yaralanma derecesini etkileyen çoklu yaralanmalar meydana gelebilir. Ayrıca, cihazın doğruluğunu ve üretim modelinin tekrarlanabilirliğini sağlamak için mekanik hassasiyet elde etmek de zordur. Sonsuz horizon çarpma tertibatları, ağır damlalar yerine omuriliğe uygulanan kuvveti kontrol ederek kontüzyonlara neden olur10. Çarpma tertibatı ile omurilik arasındaki darbe kuvvetini doğrudan ölçmek için bir sensöre bağlı bir bilgisayar kullanır. Eşiğe ulaşıldığında, çarpma tertibatı hemen geri çekilir, böylece ağırlığın geri tepmesi önlenir ve doğruluk10,11 iyileştirilir. Bununla birlikte, hasar vermek için bu ince motor modalitesinin kullanılması, tutarsız hasara ve işlevsel eksikliklere neden olabilir6. Ohio Eyalet Üniversitesi (OSU) cihazı, omuriliğin dorsal yüzeyini elektromanyetik bir sürücü12,13 tarafından geçici bir oranda sıkıştırır. Bu cihaz, omurilik yaralanmalarına neden olmak için kısa mesafeli kompresyonlar kullandığından, sonsuz ufuk çarpma tertibatlarına benzer. Bununla birlikte, sıfır noktasının ilk tespitinin beyin omurilik sıvısınınvarlığından dolayı hatalara neden olacağı konusunda çeşitli sınırlamaları vardır 6,14. Özetle, omurilik yaralanması kontüzyonu hayvan modellerini geliştirmek için kullanılabilecek birçok araç vardır, ancak hepsinin hayvan modellerinin yetersiz doğruluğuna ve tekrarlanabilirliğine yol açan bazı sınırlamaları vardır. Bu nedenle, omurilik yaralanmasının fare kontüzyon modellerini daha doğru, rahat ve tekrarlanabilir bir şekilde oluşturmak için, otomatik ve akıllı bir omurilik yaralanması çarpma tertibatına ihtiyaç vardır.

Yeni bir omurilik yaralanması çarpma tertibatı sunuyoruz, Guangzhou Jinan Üniversitesi akıllı omurilik yaralanması sistemi (G akıllı SCI sistemi; Şekil 1), omurilik yaralanması kontüzyon modelleri üretmek için. Cihaz, vuruş hızı, vuruş derinliği ve bekleme süresi dahil olmak üzere ayarlanan vuruş parametrelerine göre vuruşları otomatikleştirmek için otomatik bir mobil platformla birlikte bir konumlandırma cihazı olarak bir lazer telemetre kullanır. Otomatik çalışma, insan faktörlerini azaltır ve hayvan modellerinin doğruluğunu ve tekrarlanabilirliğini artırır.

Protokol

Hayvanları içeren çalışmalar Jinan Üniversitesi Etik Kurulu tarafından gözden geçirilmiş ve onaylanmıştır.

1. Hayvanların uyuşturulması ve T10 spinal laminektomi

  1. Bu çalışma için 8 haftalık dişi genç yetişkin C57 / 6J fareleri kullanın. Fareleri intraperitoneal ketamin (100 mg / kg) ve diazepam (5 mg / kg) enjeksiyonu ile uyuşturun. Ağrı refleksi kaybı ile gösterilen başarılı anesteziyi kontrol edin. Anestezi altında kuruluğu önlemek için gözlere veteriner merhemi sürün.
  2. Cildi ortaya çıkarmak için bir tıraş makinesi kullanarak farelerin arkasındaki tüyleri tıraş edin. Cildi üç alternatif iyodofor ve alkol ile dezenfekte edin.
  3. Bir neşter kullanarak sırt derisinde 2,5 cm medial uzunlamasına kesi yapın ve cımbız kullanarak omurgayı T9-T11 seviyesinde ortaya çıkarın.
  4. Bir spinal fiksatör kullanarak T10 fasetlerini bilateral olarak sabitleyin. Omurganın sabit bir şekilde sabitlendiğinden emin olun. Paravertebral kasların sıyrıldığından emin olun ve T10 segmentinin omuriliğini ortaya çıkarmak için mikro taşlama matkabı kullanarak spinöz süreci ve laminaları çıkarın.

2. G smart SCI sistemi kullanılarak T10 omuriliğinin kontüzyonu

  1. Anahtarı açın ve cihazın otomatik olarak orijinal durumuna dönmesini bekleyin. Spinal fiksatörü G smart SCI sistemine yerleştirin ve vidalarla sabitleyin.
  2. Çalışma dokunmatik ekranını kullanarak (Şekil 2A), darbe hızı (1 m/s), darbe derinliği (üç farklı fare seti için 0.5 mm, 0.8 mm ve 1.1 mm) ve bekleme süresi (500 ms) dahil olmak üzere hasar parametrelerini ayarlayın15.
  3. Platformu hareket ettirerek lazer telemetreyi açıkta kalan omuriliğin ortasına hizalayın. (Şekil 2B)
  4. Dokunmatik ekrandaki Hazır düğmesine tıklayın (Şekil 2C). Darbe başlığı, ayar parametrelerine bağlı olarak otomatik olarak belirli bir yüksekliğe ayarlanacaktır. Taşıyıcı tabla, omurilik darbe bölgesini otomatik olarak darbe başlığının altına taşır.
  5. Darbe bölgesini daha fazla belirlemek için darbe başlığına manuel olarak basın. Başlat düğmesine tıklayın, darbe kafası ayarlanan parametrelere göre omuriliğe çarpacaktır.
  6. Fareleri cihazdan çıkarın ve omurilik yaralanmasını belirlemek için Stereomikroskop (20x) altında gözlemleyin (Şekil 3). Model geliştirmenin başarısını belirlemek için lokal tıkanıklık, çökme ve omurilik zarı yırtılmasını gözlemleyin.
  7. Kas, fasya, deri tabaka tabaka 3-0 dikiş kullanılarak dikilir. Fareleri ılık bir kutuya koyun ve iyileşmelerini bekleyin.

3. Ameliyat sonrası bakım

  1. Ameliyattan sonraki 7 gün boyunca her gün deri altına meloksikam (5 mg/kg) enjekte edin. Mesane fonksiyonları geri gelene kadar mesaneyi her 8 saatte bir manuel olarak boşaltın.
  2. Ameliyattan 14 gün sonra dikiş ipliklerini çıkarın.

4. Omurilik yaralanmasının etkilerinin test edilmesi

  1. Ameliyat sonrası ilk günden itibaren fareler için BMS skorlarını hesaplayın16,17.
  2. Ameliyatsonrası 30. günde, podyum, ayak hatası ve rotarod16,17 dahil olmak üzere hayvan davranış deneyleri yapın. Podyum: 45 cm'lik rekor mesafe; Maksimum çalışma süresi 8 sn; Kamera kazancı 28.02; Yoğunluk eşiği 0.01. Ayak hatası: Her fare için 60 adım kaydedin. Rotarod: Hız 20 rpm. Farenin düşme süresini kaydedin ve 120 saniyeden fazla bir süre için 120 saniye olarak kaydedin.
  3. Ameliyat sonrası 31. günde, fareleri intraperitoneal ketamin (100 mg / kg) ve diazepam (5 mg / kg) enjeksiyonu ile uyuşturun ve daha sonra% 4 PFA kullanarak perfüzyonla fareleri ötenazi yapın. Omuriliği dikkatlice çıkarın ve parafin gömmek için yaralanma bölgesinin 5 mm yukarısını ve altını kesin. Fare omurilik yaralanmasının merkezinin 5 μm'lik bir bölümünü yapın ve Hematoksilen ve eozin boyama17 yapın.
  4. İstatistiksel analiz için ticari yazılım kullanın. Verileri ortalamanın (SEM) ortalama ± standart hatası olarak ifade edin ve tek yönlü ANOVA kullanarak karşılaştırın; p < 0.05 anlamlı kabul edildi.

Sonuçlar

Laminektomi, yukarıda tarif edildiği gibi 24 dişi fareye (8 haftalık) uygulandı. Sahte gruptaki fareler (n = 6) omurilik yaralanmasına maruz kalmazken, 0.5 mm grubu (n = 6), 0.8 mm grubu (n = 6) ve 1.1 mm grubu (n = 6) dahil olmak üzere farelerin geri kalanı farklı derinliklerde omurilik sıkışmasına maruz bırakıldı. BMS skorları postoperatif 1. aya kadar düzenli olarak kaydedildi (Şekil 4). Farklı gruplarda farelerin postoperatif BMS skorlarında anlamlı farklılıklar v...

Tartışmalar

Omurilik yaralanması, ciddi fiziksel ve zihinsel bozukluklara neden olabilen duyusal ve motor eksikliklere yol açabilir. Çin'de, farklı illerde omurilik yaralanması insidansı milyonda 14,6 ila 60,6 arasında değişmektedir18. SCI prevalansındaki artış, sağlık sistemi üzerinde daha fazla baskı oluşturacaktır. Günümüzde, omurilik yaralanmaları ve patomekanizmaları ve onarım süreçleri henüz tam olarak anlaşılamamış olduğu için yaralanmalar için sınırlı etkili tedavi...

Açıklamalar

Yazarlar hiçbir rakip mali çıkar beyan etmemektedir.

Teşekkürler

Bu çalışma, Çin Ulusal Doğa Bilimleri Vakfı, No. 82102314 (ZSJ'ye) ve 32170977 (HSL'ye) ve Guangdong Eyaleti Doğa Bilimleri Vakfı, No. 2022A1515010438 (ZSJ'ye) ve 2022A1515012306 (HSL'ye). Bu çalışma, Çin'deki Jinan Üniversitesi Birinci Bağlı Hastanesi'nin Klinik Sınır Teknolojisi Programı, No. JNU1AF- CFTP- 2022- a01206 (HSL'ye). Bu çalışma, Guangzhou Bilim ve Teknoloji Planı Projesi, No. 202201020018 (HSL'ye), 2023A04J1284 (ZSJ'ye) ve 2023A03J1024 (HSL'ye) tarafından desteklenmiştir.

Malzemeler

NameCompanyCatalog NumberComments
0.01M PBS (powder, pH7.2-7.4)Solarbio Life SciencesP1010
2,2,2-TribromoethanolMacklin75-80-9
4% paraformaldehyde tissue fixativeBiosharp life scienceBL539A
BiomicroscopeLeicaLCC50 HD
CatWalk Noldus Information TechnologyCatWalk XT 9.1
Cover glassCITOTEST Scientific10212432C
Embedding machineChangzhou Zhongwei Electronic InstrumentBMJ-A
Ethanol absoluteDAMAO64-17-5
FootFaultScanClever Sys Inc.-
Glass slideCITOTEST Scientific80302-2104
Hematoxylin and Eosin Staining KitBeyotime BiotechnologyC0105S
micro-grinding drill FEIYUBIO19-7010
Mouse spinal fixatorRWD Life Science68094
Paraffin microtomeThermoshandon finesse 325
RotaRod for MiceUgo Basile47600
StereomicroscopeKUY NICESZM-7045
Tert-Amyl alcoholMacklin75-85-4
XyleneChina National Pharmaceutical#10023418

Referanslar

  1. Venkatesh, K., Ghosh, S. K., Mullick, M., Manivasagam, G., Sen, D. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell and Tissue Research. 377 (2), 125-151 (2019).
  2. Chiu, C. W., Cheng, H., Hsieh, S. L. Contusion Spinal Cord Injury Rat Model. Bio Protocol. 7 (12), e2337 (2017).
  3. Thygesen, M. M., Guldbæk-Svensson, F., Rasmussen, M. M., Lauridsen, H. Contusion Spinal Cord Injury via a Microsurgical Laminectomy in the Regenerative Axolotl. Journal of Visualized Experiments. (152), 60337 (2019).
  4. Anderson, T. E. A controlled pneumatic technique for experimental spinal cord contusion. Journal of Neuroscience Methods. 6 (4), 327-333 (1982).
  5. Allen, A. R. SURGERY OF EXPERIMENTAL LESION OF SPINAL CORD EQUIVALENT TO CRUSH INJURY OF FRACTURE DISLOCATION OF SPINAL COLUMN: A PRELIMINARY REPORT. Journal of the American Medical Association. LVII (11), 878-880 (1911).
  6. Cheriyan, T., et al. Spinal cord injury models: a review. Spinal Cord. 52 (8), 588-595 (2014).
  7. Yan, R., et al. A modified impactor for establishing a graded contusion spinal cord injury model in rats. Annals of Translational Medicine. 10 (8), 436 (2022).
  8. Gruner, J. A. A monitored contusion model of spinal cord injury in the rat. Journal of Neurotrauma. 9 (2), 123-126 (1992).
  9. Ghnenis, A. B., et al. Evaluation of the Cardiometabolic Disorders after Spinal Cord Injury in Mice. Biology (Basel). 11 (4), 495 (2022).
  10. Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A., Lumpp, J. E. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. Journal of Neurotrauma. 20 (2), 179-193 (2003).
  11. Hong, Y. R., et al. Ultrasound stimulation improves inflammatory resolution, neuroprotection, and functional recovery after spinal cord injury. Scientific Reports. 12 (1), 3636 (2022).
  12. Noyes, D. H. Electromechanical impactor for producing experimental spinal cord injury in animals. Medical & Biological Engineering & Computing. 25 (3), 335-340 (1987).
  13. Stokes, B. T., Noyes, D. H., Behrmann, D. L. An electromechanical spinal injury technique with dynamic sensitivity. Journal of Neurotrauma. 9 (3), 187-195 (1992).
  14. Pearse, D. D., et al. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat. Journal of Neurotrauma. 22 (6), 680-702 (2005).
  15. Wu, X., et al. A Tissue Displacement-based Contusive Spinal Cord Injury Model in Mice. Journal of Visualized Experiments. (124), 54988 (2017).
  16. Forgione, N., Chamankhah, M., Fehlings, M. G. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. Journal of Neurotrauma. 34 (6), 1227-1239 (2017).
  17. Ji, Z. S., et al. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials. 284, 121481 (2022).
  18. Chen, C., Qiao, X., Liu, W., Fekete, C., Reinhardt, J. D. Epidemiology of spinal cord injury in China: A systematic review of the chinese and english literature. Spinal Cord. 60 (12), 1050-1061 (2022).
  19. Flack, J. A., Sharma, K. D., Xie, J. Y. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regeneration Research. 17 (2), 283-291 (2022).
  20. Khuyagbaatar, B., Kim, K., Kim, Y. H. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model. Journal of Neurotrauma. 32 (24), 1987-1993 (2015).
  21. Alizadeh, A., Dyck, S. M., Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology. 10, 282 (2019).
  22. Bilgen, M. A new device for experimental modeling of central nervous system injuries. Neurorehabilitation and Neural Repair. 19 (3), 219-226 (2005).
  23. Khan, M., et al. GSNOR and ALDH2 alleviate traumatic spinal cord injury. Brain Research. 1758, 147335 (2021).

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

JoVE de Bu AySay 203kont zyonomurilik yaralanmaskont zif omurilik yaralanmas modelifarelerhayvan modeli

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır