JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Здесь представлено новое автоматизированное устройство для ушиба спинного мозга для мышей, которое может точно воспроизводить модели ушиба спинного мозга различной степени.

Аннотация

Повреждение спинного мозга (ТСМ) из-за травматических повреждений, таких как автомобильные аварии и падения, связано с постоянной дисфункцией спинного мозга. Создание контузионных моделей травмы спинного мозга путем воздействия на спинной мозг приводит к патологиям, сходным с большинством травм спинного мозга в клинической практике. Точные, воспроизводимые и удобные животные модели травмы спинного мозга имеют важное значение для изучения травмы спинного мозга. Мы представляем новое автоматизированное устройство для ушиба спинного мозга для мышей, интеллектуальную систему травм спинного мозга Университета Гуанчжоу Цзинань, которая может создавать модели ушибов спинного мозга с точностью, воспроизводимостью и удобством. Система точно создает модели различной степени повреждения спинного мозга с помощью лазерных датчиков расстояния в сочетании с автоматизированной мобильной платформой и передовым программным обеспечением. Мы использовали эту систему для создания трехуровневых моделей мышей с травмами спинного мозга, определили их баллы по шкале Бассо (BMS) и провели поведенческие анализы, а также тесты на окрашивание, чтобы продемонстрировать их точность и воспроизводимость. Показан каждый шаг разработки моделей травм с использованием этого устройства, формируя стандартизированную процедуру. Этот метод позволяет создавать воспроизводимые модели мышей с ушибом спинного мозга и снижает факторы манипулирования человеком за счет удобных процедур обращения. Разработанная животная модель является достоверной для изучения механизмов повреждения спинного мозга и связанных с ними подходов к лечению.

Введение

Травма спинного мозга обычно приводит к постоянной дисфункции спинного мозга ниже поврежденного сегмента. В основном это вызвано предметами, ударяющимися о позвоночник, и гиперэкстензией позвоночника, такими как дорожно-транспортные происшествияи падения1. В связи с ограниченной доступностью эффективных вариантов лечения травмы спинного мозга, выяснение патогенеза повреждений спинного мозга на животных моделях будет информативным для разработки соответствующих подходов к лечению. Модель ушиба спинного мозга, вызванной воздействием на спинной мозг, приводит к разработке животных моделей с аналогичной патологией к большинству клинических случаев повреждения спинного мозга 2,3. Поэтому важно создавать точные, воспроизводимые и удобные модели животных для ушиба спинного мозга.

С тех пор, как в 1911 году Аллен изобрел первую животную модель травмы спинного мозга, были достигнуты значительные успехи в разработке инструментов длясоздания моделей повреждений спинного мозга у животных. В зависимости от механизмов травмы модели повреждения спинного мозга классифицируются как ушиб, компрессия, дистракционная деформация, вывих, транссекция или химическая6. Среди них модели контузии, которые используют внешние силы для смещения и травмирования спинного мозга, наиболее близки к клинической этиологии большинства пациентов с травмой спинного мозга. Поэтому модель контузии использовалась многими исследователями при изучении травм спинного мозга 3,7. Для разработки моделей ушибов спинного мозга используются различные инструменты. Многоцентровые исследования травм спинного мозга животных (MASCIS) Нью-Йоркского университета (NYU) производят ушибы спинного мозга с помощью устройства для сброса веса8. После нескольких обновленных версий импактор MASCIS широко используется для разработки моделей животных при ушибе спинного мозга9. Однако, когда ударный стержень MASCIS падает и ударяется о спинной мозг, могут произойти множественные травмы, что влияет на степень повреждения в моделях травм спинного мозга. Кроме того, достижение механической точности для обеспечения точности прибора и повторяемости производственной модели также является сложной задачей. Импакторы с бесконечным горизонтом вызывают ушибы, контролируя силу, приложенную к спинному мозгу, а не тяжелые капли10. Он использует компьютер, подключенный к датчику, для непосредственного измерения силы удара между ударным механизмом и спинным мозгом. При достижении порога ударник немедленно втягивается, тем самым избегая отскока груза и повышая точность10,11. Тем не менее, использование этой мелкой моторики для нанесения повреждений может привести к непоследовательнымповреждениям и функциональным дефицитам6. Устройство Университета штата Огайо (OSU) сжимает дорсальную поверхность спинного мозга с переходной скоростью с помощью электромагнитного драйвера12,13. Это устройство похоже на импакторы с бесконечным горизонтом, так как оно использует компрессии на короткие расстояния для нанесения травм спинного мозга. Однако он имеет различные ограничения в том, что первоначальное определение нулевой точки вызовет ошибки из-за присутствия спинномозговой жидкости 6,14. Таким образом, существует множество инструментов, которые могут быть использованы для разработки моделей контузии спинного мозга на животных, но все они имеют некоторые ограничения, которые приводят к недостаточной точности и воспроизводимости моделей животных. Поэтому для более точного, удобного и воспроизводимого создания моделей ушиба спинного мозга мышью необходим автоматизированный и интеллектуальный импактор травмы спинного мозга.

Мы представляем новый импактор для травм спинного мозга, интеллектуальную систему травм спинного мозга Университета Гуанчжоу Цзинань (G smart SCI system; Рис. 1) для создания моделей ушибов спинного мозга. В качестве позиционирующего устройства устройство использует лазерный дальномер в сочетании с автоматизированной мобильной платформой для автоматизации ударов по заданным параметрам удара, включая скорость удара, глубину поражения и время пребывания. Автоматизированная работа снижает человеческий фактор и повышает точность, а также воспроизводимость моделей животных.

протокол

Исследования с участием животных были рассмотрены и одобрены Комитетом по этике Цзинаньского университета.

1. Обезболивание животных и спинальная ламинэктомия Т10

  1. Для этого исследования использовали 8-недельных самок молодых взрослых мышей C57/6J. Обезболивайте мышей внутрибрюшинными инъекциями кетамина (100 мг/кг) и диазепама (5 мг/кг). Проверьте успешность анестезии, на что указывает потеря болевого рефлекса. Нанесите ветеринарную мазь на глаза, чтобы предотвратить сухость под наркозом.
  2. Сбрейте волосы на спине мышей с помощью бритвы, чтобы обнажить кожу. Продезинфицируйте кожу тремя чередующимися дозами йодофора и спирта.
  3. Сделайте медиальный продольный разрез 2,5 см на дорсальной коже с помощью скальпеля и обнажите позвоночник на уровне Т9-Т11 с помощью пинцета.
  4. Двусторонняя фиксация фасеток Т10 с помощью спинального фиксатора. Убедитесь, что позвоночник надежно закреплен. Убедитесь, что паравертебральные мышцы обнажены, и удалите остистый отросток, а также пластинки с помощью микрошлифовального сверла, чтобы обнажить спинной мозг сегмента Т10.

2. Ушиб спинного мозга T10 с помощью системы G smart SCI

  1. Включите переключатель и подождите, пока устройство автоматически вернется в исходное состояние. Поместите фиксатор позвоночника в систему G smart SCI и закрепите его винтами.
  2. С помощью рабочего сенсорного экрана (рис. 2A) задайте параметры повреждения, включая скорость удара (1 м/с), глубину удара (0,5 мм, 0,8 мм и 1,1 мм для трех разных наборов мышей) и время выдержки (500 мс)15.
  3. Выровняйте лазерный дальномер по центру обнаженного спинного мозга, перемещая платформу. (Рисунок 2Б)
  4. Нажмите кнопку Ready (Готово) на сенсорном экране (рис. 2C). Ударная головка автоматически отрегулируется на определенную высоту в зависимости от параметров настройки. Несущий стол автоматически перемещает место удара спинного мозга ниже ударной головки.
  5. Вручную нажмите на ударную головку, чтобы определить место удара. Нажмите кнопку «Старт », ударная головка ударит по спинному мозгу в зависимости от заданных параметров.
  6. Извлеките мышей из устройства и наблюдайте под стереомикроскопом (20x), чтобы определить повреждение спинного мозга (рис. 3). Чтобы определить успешность разработки модели, наблюдайте за локальными застойными явлениями, коллапсом и разрывом спинномозговой оболочки.
  7. Сшивайте мышцы, фасции и кожу слой за слоем, используя 3-0 швов. Поместите мышей в теплый ящик и дождитесь их выздоровления.

3. Послеоперационный уход

  1. Вводите мелоксикам (5 мг/кг) подкожно ежедневно в течение 7 дней после операции. Опорожняйте мочевой пузырь вручную каждые 8 часов до тех пор, пока функции мочевого пузыря не восстановятся.
  2. На 14 день после операции снимите шовные нити.

4. Тестирование последствий травмы позвоночника

  1. Рассчитайте баллы BMS для мышей с первого послеоперационного дня 16,17.
  2. На30-й день после операции проводят поведенческие эксперименты на животных, в том числе на подиуме, в стопе и ротароде16,17. Подиум: рекордное расстояние 45 см; Максимальная продолжительность бега 8 с; Коэффициент усиления камеры 28,02; Порог интенсивности 0,01. Неисправность ноги: запишите 60 шагов для каждой мыши. Ротарод: Скорость 20 об/мин. Запишите время падения мыши и запишите его как 120 с в течение более чем 120 секунд.
  3. На 31-й день после операции обезболивают мышей внутрибрюшинной инъекцией кетамина (100 мг/кг) и диазепама (5 мг/кг), а затем усыпляют мышей перфузией с использованием 4% PFA. Осторожно извлеките спинной мозг и перехватите 5 мм выше и ниже места повреждения для введения парафина. Сделайте 5 мкм срез центра спинного мозга мыши и выполните окрашивание гематоксилином и эозином17.
  4. Для статистического анализа используйте коммерческое программное обеспечение. Выражать данные в виде среднего ± стандартной ошибки среднего значения (SEM) и сравнивать с помощью одностороннего ANOVA; p < 0,05 считалось значимым.

Результаты

Ламинэктомия была выполнена 24 самкам мышей (в возрасте 8 недель), как описано выше. Мыши в фиктивной группе (n=6) не подвергались повреждению спинного мозга, в то время как остальные мыши, включая группу 0,5 мм (n=6), группу 0,8 мм (n=6) и группу 1,1 мм (n=6), подвергались удару спинного мозга разной глуб...

Обсуждение

Травма спинного мозга может привести к сенсорному и двигательному дефициту, что может привести к серьезным физическим и умственным нарушениям. В Китае частота травм спинного мозга в разных провинциях колеблется от 14,6 до 60,6 на миллион18. Рост распространенности ТСМ окажет б...

Раскрытие информации

Авторы заявляют об отсутствии конкурирующих финансовых интересов.

Благодарности

Эта работа была поддержана Национальным фондом естественных наук Китая, No 82102314 (для ZSJ) и 32170977 (для HSL) и Фондом естественных наук провинции Гуандун, No 2022A1515010438 (для ZSJ) и 2022A1515012306 (для HSL). Это исследование было поддержано Программой клинических передовых технологий Первой аффилированной больницы Цзинаньского университета, Китай, No JNU1AF- CFTP- 2022- a01206 (HSL). Это исследование было поддержано Проектом научно-технического плана Гуанчжоу, No 202201020018 (для HSL), 2023A04J1284 (для ZSJ) и 2023A03J1024 (для HSL).

Материалы

NameCompanyCatalog NumberComments
0.01M PBS (powder, pH7.2-7.4)Solarbio Life SciencesP1010
2,2,2-TribromoethanolMacklin75-80-9
4% paraformaldehyde tissue fixativeBiosharp life scienceBL539A
BiomicroscopeLeicaLCC50 HD
CatWalk Noldus Information TechnologyCatWalk XT 9.1
Cover glassCITOTEST Scientific10212432C
Embedding machineChangzhou Zhongwei Electronic InstrumentBMJ-A
Ethanol absoluteDAMAO64-17-5
FootFaultScanClever Sys Inc.-
Glass slideCITOTEST Scientific80302-2104
Hematoxylin and Eosin Staining KitBeyotime BiotechnologyC0105S
micro-grinding drill FEIYUBIO19-7010
Mouse spinal fixatorRWD Life Science68094
Paraffin microtomeThermoshandon finesse 325
RotaRod for MiceUgo Basile47600
StereomicroscopeKUY NICESZM-7045
Tert-Amyl alcoholMacklin75-85-4
XyleneChina National Pharmaceutical#10023418

Ссылки

  1. Venkatesh, K., Ghosh, S. K., Mullick, M., Manivasagam, G., Sen, D. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell and Tissue Research. 377 (2), 125-151 (2019).
  2. Chiu, C. W., Cheng, H., Hsieh, S. L. Contusion Spinal Cord Injury Rat Model. Bio Protocol. 7 (12), e2337 (2017).
  3. Thygesen, M. M., Guldbæk-Svensson, F., Rasmussen, M. M., Lauridsen, H. Contusion Spinal Cord Injury via a Microsurgical Laminectomy in the Regenerative Axolotl. Journal of Visualized Experiments. (152), 60337 (2019).
  4. Anderson, T. E. A controlled pneumatic technique for experimental spinal cord contusion. Journal of Neuroscience Methods. 6 (4), 327-333 (1982).
  5. Allen, A. R. SURGERY OF EXPERIMENTAL LESION OF SPINAL CORD EQUIVALENT TO CRUSH INJURY OF FRACTURE DISLOCATION OF SPINAL COLUMN: A PRELIMINARY REPORT. Journal of the American Medical Association. LVII (11), 878-880 (1911).
  6. Cheriyan, T., et al. Spinal cord injury models: a review. Spinal Cord. 52 (8), 588-595 (2014).
  7. Yan, R., et al. A modified impactor for establishing a graded contusion spinal cord injury model in rats. Annals of Translational Medicine. 10 (8), 436 (2022).
  8. Gruner, J. A. A monitored contusion model of spinal cord injury in the rat. Journal of Neurotrauma. 9 (2), 123-126 (1992).
  9. Ghnenis, A. B., et al. Evaluation of the Cardiometabolic Disorders after Spinal Cord Injury in Mice. Biology (Basel). 11 (4), 495 (2022).
  10. Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A., Lumpp, J. E. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. Journal of Neurotrauma. 20 (2), 179-193 (2003).
  11. Hong, Y. R., et al. Ultrasound stimulation improves inflammatory resolution, neuroprotection, and functional recovery after spinal cord injury. Scientific Reports. 12 (1), 3636 (2022).
  12. Noyes, D. H. Electromechanical impactor for producing experimental spinal cord injury in animals. Medical & Biological Engineering & Computing. 25 (3), 335-340 (1987).
  13. Stokes, B. T., Noyes, D. H., Behrmann, D. L. An electromechanical spinal injury technique with dynamic sensitivity. Journal of Neurotrauma. 9 (3), 187-195 (1992).
  14. Pearse, D. D., et al. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat. Journal of Neurotrauma. 22 (6), 680-702 (2005).
  15. Wu, X., et al. A Tissue Displacement-based Contusive Spinal Cord Injury Model in Mice. Journal of Visualized Experiments. (124), 54988 (2017).
  16. Forgione, N., Chamankhah, M., Fehlings, M. G. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. Journal of Neurotrauma. 34 (6), 1227-1239 (2017).
  17. Ji, Z. S., et al. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials. 284, 121481 (2022).
  18. Chen, C., Qiao, X., Liu, W., Fekete, C., Reinhardt, J. D. Epidemiology of spinal cord injury in China: A systematic review of the chinese and english literature. Spinal Cord. 60 (12), 1050-1061 (2022).
  19. Flack, J. A., Sharma, K. D., Xie, J. Y. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regeneration Research. 17 (2), 283-291 (2022).
  20. Khuyagbaatar, B., Kim, K., Kim, Y. H. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model. Journal of Neurotrauma. 32 (24), 1987-1993 (2015).
  21. Alizadeh, A., Dyck, S. M., Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology. 10, 282 (2019).
  22. Bilgen, M. A new device for experimental modeling of central nervous system injuries. Neurorehabilitation and Neural Repair. 19 (3), 219-226 (2005).
  23. Khan, M., et al. GSNOR and ALDH2 alleviate traumatic spinal cord injury. Brain Research. 1758, 147335 (2021).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

JoVE203

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены