Sign In

24.14 : Electrostatic Boundary Conditions

Consider an external electric field propagating through a homogeneous medium. When the electric field crosses the surface boundary of the medium, it undergoes a discontinuity. The electric field can be resolved into normal and tangential components. The amount by which the field changes at any boundary is given by the difference between the field components above and below the surface boundary.

The surface integral of an electric field is given by Gauss's law in integral form and is related to the total enclosed charge. Consider a Gaussian pillbox on the surface boundary. The surface integral of the field is the sum of the integrals over all the surfaces of the pillbox. If the thickness of the pillbox tends to zero, then the surface integral includes only the contributions of the pillbox faces above and below the boundary. Solving this gives the discontinuity of the normal component of the electric field at any surface boundary.

Equation1

To estimate the discontinuity of the tangential component, consider a loop on the surface boundary. The integration of the electric field over this closed path is zero. Breaking this into the contributions from four parts of the loop and applying the condition that the thickness of the loop tends to zero implies that the tangential component of the electric field is continuous across the boundary.

Equation2

Combining the normal and tangential equations, the field at the boundary can be written by defining the unit vector perpendicular to the surface. It is known that the electric field is the negative gradient of the potential. The line integral of the field from below to above the boundary tends to zero, implying that the potential is continuous across any boundary.

Equation3

Equation4

Tags
Electrostatic Boundary ConditionsElectric FieldHomogeneous MediumSurface BoundaryDiscontinuityNormal ComponentTangential ComponentGauss s LawGaussian PillboxSurface IntegralClosed Path IntegrationElectric PotentialField Continuity

From Chapter 24:

article

Now Playing

24.14 : Electrostatic Boundary Conditions

Electric Potential

280 Views

article

24.1 : Electric Potential Energy

Electric Potential

4.7K Views

article

24.2 : Electric Potential Energy in a Uniform Electric Field

Electric Potential

3.9K Views

article

24.3 : Electric Potential Energy of Two Point Charges

Electric Potential

3.9K Views

article

24.4 : Electric Potential and Potential Difference

Electric Potential

3.8K Views

article

24.5 : Finding Electric Potential From Electric Field

Electric Potential

3.5K Views

article

24.6 : Calculations of Electric Potential I

Electric Potential

1.6K Views

article

24.7 : Calculations of Electric Potential II

Electric Potential

1.4K Views

article

24.8 : Equipotential Surfaces and Field Lines

Electric Potential

3.3K Views

article

24.9 : Equipotential Surfaces and Conductors

Electric Potential

3.0K Views

article

24.10 : Determining Electric Field From Electric Potential

Electric Potential

4.2K Views

article

24.11 : Poisson's And Laplace's Equation

Electric Potential

2.3K Views

article

24.12 : Van de Graaff Generator

Electric Potential

1.5K Views

article

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.3K Views

article

24.15 : Second Uniqueness Theorem

Electric Potential

809 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved