Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a new method to visualize the specific location of where transcellular and paracellular permeability is enhanced in the inflamed colonic mucosa. In this assay, we apply a 10 kDa fluorescent dye conjugated to a lysine fixable dextran to visualize high permeability regions (HPR) in the colonic mucosa.

Abstract

Epithelial cells lining the intestinal mucosa create a physical barrier that separates the luminal content from the interstitium. Epithelial barrier impairment has been associated with the development of various pathologies such as inflammatory bowel diseases (IBD). In the inflamed mucosa, superficial erosions or micro-erosions that corrupt epithelial monolayers correspond to sites of high permeability. Several mechanisms have been implicated in the formation of micro-erosions including cell shedding and apoptosis. These micro-erosions often represent microscopic epithelial gaps randomly distributed in the colon. Visualization and quantification of those epithelial gaps has emerged as an important tool to investigate intestinal epithelial barrier function. Here, we describe a new method to visualize the specific location of where transcellular and paracellular permeability is enhanced in the inflamed colonic mucosa. In this assay, we apply a 10 kDa fluorescent dye conjugated to a lysine fixable dextran to visualize high permeability regions (HPR) in the colonic mucosa. Additional use of cell death markers revealed that HPR encompass apoptotic foci where epithelial extrusion/shedding occurs. The protocol described here provides a simple but effective approach to visualize and quantify micro-erosions in the intestine, which is a very useful tool in disease models, in which the intestinal epithelial barrier is compromised.

Introduction

The gastrointestinal (GI) mucosa creates a physical barrier that separates the extracellular environment and the internal host milieu, and is involved in the absorption of nutrients, water and electrolytes. The intestinal barrier encompasses a mucus layer constituted of glycoproteins, a monolayer of epithelial cells, and the underlying lamina propria are immune and stromal cells reside. Intestinal epithelial cells forming the physical barrier are linked together by different protein complexes, which includes the adherens junction (AJ), the tight junction (TJ) and the desmosomes (DMs). Impairment in the epithelial barrier function augments intestinal permeability and a....

Protocol

All procedures were reviewed and approved by the CINVESTAV Institutional Committee for Care and Use of Laboratory Animals (CICUAL).

1. Preparation of materials and reagents

  1. Pre-warm Hartmann's solution (130 mM NaCl, 28 mM lactate, 4 mM KCl, 1.5 mM CaCl2) to 37 °C while bubbling with 95% O2/5% CO2. Maintain physiological pH (7.4) for the solution.
  2. For analyzing the passive paracellular permeability, prepare a working solution by di.......

Representative Results

In the inflamed mucosa, superficial erosions or microerosions compromise the integrity of the epithelial cell monolayer and represent sites of high permeability7,8. To assess such possibilities, we analyzed the passive permeability in the inflamed colonic mucosa in a dextran sodium sulfate colitis murine model. In brief, for 5 days, C57BL/6J mice received 2.5% DSS (w/v, 40-50 kDa) dissolved in drinking water. This model is characterized by inducing epithelial cel.......

Discussion

Epithelial homeostasis resulting from balancing cell proliferation and epithelial apoptosis maintains a proper and functional intestinal barrier. Many clinical disorders, such as IBD, are accompanied or characterized by alterations in intestinal permeability, inflammation of the mucosa and disruption of the epithelial homeostasis1. The interplay between those processes is still highly controversial. Therefore, the development of new research approaches to properly investigate those processes is an.......

Acknowledgements

The research was partially supported by the SEP-Conacyt grant (No.179 to NV/PND) and supported by the sectorial funding for research and education via the grant for Basic Science from Conacyt (No. A1-S-20887 to PND). We want to extend our gratitude to Norma Trejo, M.V.Z. Raúl Castro Luna, M.C. Leonel Martínez, Felipe Cruz Martínez, Victor Manuel García Gómez and M.V.Z. Ricardo Gaxiola Centeno for their help and technical assistance.

....

Materials

NameCompanyCatalog NumberComments
Active Caspase-3 antibody (1:1000)Cell signaling9664Cleaved caspase-3 (Asp175)(5AE1) Rabbit mAb
Alexa Fluor 488  anti rabbit (1:1000)InvitrogenA21206
Alexa Fluor 594 anti rat (1:1000)InvitrogenA21209
Confocal microscope (Leica TCS SP8x)LeicaHyD detectors  and White Light Laser
E-Cadherin antibody (1:750)SigmaMABT26Rat monoclonal Delma-1 antibody
Ethanol 70%Generic
Fixable-DextranInvitrogenD22914Dextran, Alexa Fluor, 10,000 MW, anionic, fixable
FITC DextranSigma46944Fluorescein isothiocyanate–dextran M. Wt. 4 kDa
Hartmann's SolutionPiSAHT PiSA
Incubator (AutoFlow NU-8500)Nuaire
Microplate reader (Tecan Infinite 200 PRO)Tecan
Nunc F96 MicroWell Black and White Polystyrene PlateThermoFisher Scientific
ParaformaldehydeSigmaP6148
Phalloidin (1:1000)InvitrogenA12380Alexa Fluor 568 Phalloidin
RITC DextranSigmaR8881-100MGRhodamine B Isothiocyanate-Dextran. M. Wt. 10 kDa
Secondary antibodies (1:10000)Jackson ImmunoResearch LaboratoriesHRP-conjugated secondary antibodies
Suture threadsGenericBraided silk and braided polyester surgical sutures are prefered.
ZO-1 (1:1000)Invitrogen40-2200Rb anti-ZO-1

References

  1. König, J., et al. Human Intestinal Barrier Function in Health and Disease. Clinical and Translational Gastroenterology. 7 (10), 196 (2016).
  2. Gassler, N., et al. Inflammatory bowel disease is associated with changes....

Explore More Articles

Epithelial GapsMicro erosionsIntestinal MucosaEpithelial BarrierInflammatory Bowel DiseasesPermeabilityCell SheddingApoptosisImmunofluorescence StainingFluorescent DyeDextranHigh Permeability Regions

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved