JoVE Logo

Sign In

Abstract

Bioengineering

Quantitative MRI of Endothelial Permeability and (Dys)function in Atherosclerosis

Published: December 17th, 2021

DOI:

10.3791/62724

1School of Biomedical Engineering and Imaging Sciences, King’s College London, 2BHF Centre of Excellence, Cardiovascular Division, King’s College London, 3Biochemistry and Molecular Biology Department, School of Chemistry, Complutense University, 4Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, 5ANID - Millennium Science Initiative Program - Millennium Nucleus for Cardiovascular Magnetic Resonance, 6Academic Department of Vascular Surgery, Cardiovascular Division, King’s College London, 7Wellcome Trust and EPSRC Medical Engineering Center, King’s College London, 8Escuela de Ingeniería, Universidad Católica de Chile

Abstract

Cardiovascular diseases are the leading causes of death worldwide. A permeable/leaky and dysfunctional endothelium is considered the earliest marker of vascular damage and thought to drive atherosclerosis. A method to identify these changes in vivo would be desirable in the clinic. Magnetic resonance imaging (MRI)-based tools and other technologies have enabled a profound understanding of the role of the endothelium in cardiovascular diseases and risk in vivo. There is, however, a need for reproducible and simple approaches for extracting quantifiable data reflective of endothelial damage from a single imaging study. A non-invasive, easy-to-implement, and quantitative MRI workflow was developed to acquire and analyze images that allow the quantification of two imaging biomarkers of arterial endothelial damage (leakiness/permeability and dysfunction). Here, the protocol describes the application of this method in the brachiocephalic artery of atherosclerotic ApoE-/- mice using a clinical MRI scanner. First, late gadolinium enhancement (LGE) and Modified Look-Locker Inversion Recovery (MOLLI) T1 mapping protocols to quantify endothelial leakage using an albumin-binding probe are described. Second, anatomic, and quantitative blood flow sequences to measure endothelial dysfunction, in response to acetylcholine are described. Importantly, the method outlined here allows the acquisition of high-spatial-resolution 3D images with large volumetric coverage enabling accurate segmentation of vessel wall structures to improve inter- and intra-observer variability and to increase reliability and reproducibility. Additionally, it provides quantitative data without the need for high-temporal resolution for complex kinetic modeling, making it model-independent and even allowing for imaging of highly mobile vessels (coronary arteries). Therefore, the approach simplifies and expedites data analysis. Finally, this method can be implemented on different scanners, can be extended to image different arterial beds, and is clinically applicable for use in humans. This method could be used to diagnose and treat patients with atherosclerosis by adopting a precision-medicine approach.

Explore More Videos

Keywords Quantitative MRI

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved