A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present the methodology for concisely assessing autophagosome marker LC3-II levels in extracellular vesicles (EVs) by immunoblotting. Analysis for LC3-II levels in EVs, autolysosome formation, and omegasome formation suggests the new role of STX6 in the release of LC3-II-positive EVs when autophagosome-lysosome fusion is inhibited.
(Macro)autophagy represents a fundamental cellular degradation pathway. In this process, double-membraned vesicles known as autophagosomes engulf cytoplasmic contents, subsequently fusing with lysosomes for degradation. Beyond the canonical role, autophagy-related genes also modulate a secretory pathway involving the release of inflammatory molecules, tissue repair factors, and extracellular vesicles (EVs). Notably, the process of disseminating pathological proteins between cells, particularly in neurodegenerative diseases affecting the brain and spinal cord, underscores the significance of understanding this phenomenon. Recent research suggests that the transactive response DNA-binding protein 43 kDa (TDP-43), a key player in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, is released in an autophagy-dependent manner via EVs enriched with the autophagosome marker microtubule-associated proteins 1A/1B light chain 3B-II (LC3-II), especially when autophagosome-lysosome fusion is inhibited.
To elucidate the mechanism underlying the formation and release of LC3-II-positive EVs, it is imperative to establish an accessible and reproducible method for evaluating both intracellular and extracellular LC3-II-positive vesicles. This study presents a detailed protocol for assessing LC3-II levels via immunoblotting in cellular and EV fractions obtained through differential centrifugation. Bafilomycin A1 (Baf), an inhibitor of autophagosome-lysosome fusion, serves as a positive control to enhance the levels of intracellular and extracellular LC3-II-positive vesicles. Tumor susceptibility gene 101 (TSG101) is used as a marker for multivesicular bodies. Applying this protocol, it is demonstrated that siRNA-mediated knockdown of syntaxin-6 (STX6), a genetic risk factor for sporadic Creutzfeldt-Jakob disease, augments LC3-II levels in the EV fraction of cells treated with Baf while showing no significant effect on TSG101 levels. These findings suggest that STX6 may negatively regulate the extracellular release of LC3-II via EVs, particularly under conditions where autophagosome-lysosome fusion is impaired. Combined with established methods for evaluating autophagy, this protocol provides valuable insights into the role of specific molecules in the formation and release of LC3-II-positive EVs.
Transactivation response DNA-binding protein 43 (TDP-43) is a widely expressed heterogeneous nuclear ribonucleoprotein involved in regulating exon splicing, gene transcription, and mRNA stability, all vital for cell survival1,2. In neurodegenerative conditions like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a nuclear protein TDP-43 abnormally accumulates in the cytoplasm. This shift results in a loss of TDP-43 function in the nucleus and a toxic gain-of-function in the cytoplasm. Pathological accumulation of TDP-43 begins in specific regions of the brain and spinal cord, ....
1. Preparation of the cell, P1, and P2 EV fraction from the cultured medium of HeLa cells
As shown in previous studies, Baf treatment increased the levels of TSG101 (P1: P < 0.01, P2: P = 0.012, as determined by two-way ANOVA in EZR19) and LC3-II (P1: P < 0.01, P2: P < 0.01, as determined by two-way ANOVA in EZR19) in the EV-rich fraction. Notably, Baf treatment also increased the levels of STX6 (P1: P < 0.01, P2: P < 0.01, as determined by two-way ANOVA in EZR19) in the EV fraction (Figure 1A
The immunoblotting study revealed LC3-II and TSG101 levels in the cellular fraction, the microvesicle-rich P1 EV fraction, and the exosome-rich P2 EV fraction. Live-cell imaging was used to examine autophagosomes, autolysosomes, and omegasomes, providing insight into whether STX6 knockdown influences autophagy. These combined results suggest that STX6 knockdown affects the release of LC3-II positive EVs, potentially linked to dysregulation of the autophagy pathway. A key advantage of this method is its .......
This work was supported by funding to Y.T. from Japan Society for the Promotion of Science KAKENHI [Grant Number 23K06837] (Tokyo, Japan) and Takeda Science Foundation (Osaka, Japan). The authors appreciate Dr. David C. Rubinsztein (Cambridge Institute for Medical Research, Cambridge, UK) for supplying HeLa cells.
....Name | Company | Catalog Number | Comments |
0.25 % Trypsin EDTA | Fujifilm Wako | 201-16945 | |
10 cm Dish | Thermo Fisher Scientific | 150464 | |
15 mL Tube | Thermo Fisher Scientific | 339650 | |
200 μL Pipette Tip | Nippon Genetics | FG-301 | pipetting |
2-Mercaptoethanol | Nacalai Tesque | 21417-52 | a material for sample buffer solution |
3,3'-Diaminobenzidine Tetrahydrochloride | Nacalai Tesque | 11009-41 | a material for DAB solution |
3.5 cm Dish | Thermo Fisher Scientific | 150460 | |
6 cm Dish | TrueLine | TR4001 | |
Aluminium Block Thermostatic Baths (dry thermobaths) | EYELA | 273860 | |
Aspirator | SANSYO | SAP-102 | inhaling solution |
Avanti JXN-30 | Beckman Coulter | B34193 | |
Bafilomycin A1 | Adipogen | BVT-0252 | |
Biotin-conjugated Goat Anti-rabbit IgG Antibody | Vector Laboratories | BA-1000 | 2nd antibody for immunoblotting |
Biotin-conjugated Horse Antimouse IgG Antibody | Vector Laboratories | BA-2000 | 2nd antibody for immunoblotting |
Blocking One | Nacalai Tesque | 03953-95 | a material for immunoblotting |
Bromophenol Blue | Nacalai Tesque | 05808-61 | a material for sample buffer solution |
Calf Serum | cytiva | SH30073.03 | |
CanoScan LiDE 220 | Canon | CSLIDE220 | Scanner |
Centrifuge 5702 R | eppendolf | 5703000039 | |
Counting Slides Dual Chamber | Bio-Rad | 1450015J | cell counting |
Digital Sonifier 450 | BRANSON | ||
Dimethyl Sulfoxide | nacalai tasque | 09659-14 | vehicle |
DMEM High Glucose | Nacalai Tesque | 08458-45 | culture medium |
DMEM without Phenol Red | Nacalai Tesque | 08489-45 | culture medium |
EGTA | Dojindo | 348-01311 | a material for A68 solution |
Excel | Microsoft | version 16.16.27 | satistical analysis |
EZR | Reference No. 24 | version 1.68 | satistical analysis |
FBS | Sigma | 173012 | Culture medium |
Fiji | NIH | Image analysis tool | |
Glycerol | Nacalai Tesque | 09886-05 | a material for sample buffer solution |
Hoehst33342 | Dojindo | H342 | |
Hydrogen Peroxide | Fujifilm Wako | 080-0186 | a material for DAB solution |
Kimwipe S-200 | NIPPON PAPER CRECIA | 62011 | cleaning wipe |
Low Retention Tube | Nippon Genetics | FG-MCT015CLB | siRNA and DNA transfection |
LSM780 Confocal Laser Microscope | Carl Zeiss | ||
Monoclonal Mouse Anti-LC3 Antibody | MBL | M186-3 | 1st antibody for immunoblotting |
Nickel(II) Chloride Hexahydrate | Fujifilm Wako | 149-01041 | a material for DAB solution |
N-Lauroylsarcosine Sodium Salt | Nacalai Tesque | 20117-12 | |
Optima XE-90 Ultracentrifuge | Beckman Coulter | A94471 | |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985-070 | siRNA and DNA transfection |
pEGFP-C1-hAtg13 | Addgene | 22875 | |
Penicillin/Streptomycin | Nacalai Tesque | 26253-84 | Culture medium |
Pierce BCA Protein Assay Kits | Thermo Fisher Scientific | 23225 | |
Polyclonal Rabbit Anti-PCNA Antibody | BioAcademia | 70-080 | 1st antibody for immunoblotting |
Polyclonal Rabbit Anti-syntaxin 6 Antibody | ProteinTech | 10841-1-AP | 1st antibody for immunoblotting |
Polyclonal Rabbit Anti-TSG101 Antibody | ProteinTech | 28283-1-AP | 1st antibody for immunoblotting |
Polyclonal Rabbit Anti-ULK1 Antibody | ProteinTech | 20986-1-AP | 1st antibody for immunoblotting |
Polyvinylidene Difluoride Membrane | Milliore | IPVH00010 | a material for immunoblotting |
R | R development core team | version 4.4.1 | satistical analysis |
RNAiMAX | Thermo Fisher Scientific | 13778 | siRNA transfection reagent |
siRNA STX6 | Thermo Fisher Scientific | HSS115604 | siRNA for transfection |
Sodium Chloride | Nacalai Tesque | 31320-05 | a material for Tris buffer and A68 solution |
Sodium Dodecyl Sulfate | Fujifilm Wako | 192-13981 | a material for sample buffer solution |
SPARK Microplate Reader | TECAN | ||
Stealth RNAi Negative Control Duplexes, Med GC | Thermo Fisher Scientific | 12935300 | siRNA transfection |
Sucrose | Fujifilm Wako | 193-00025 | a material for A68 solution |
TC20 Automated Cell Counter with Thermal Printer | Bio-Rad | 1450109J1 | cell counting |
Thermobath | TOKYO RIKAKIKAI | MG-3100 | incubation |
TransIT-293 | Mirus Bio | MIR 2700 | DNA transfection reagent |
TransIT-LT1 | Mirus Bio | MIR2300 | DNA transfection reagent |
Tris(hydroxymethyl)aminomethane | Nacalai Tesque | 35406-75 | a material for Tris buffer, sample buffer and A68 solution |
Trypan Blue Dye 0.40% | Bio-Rad | 1450021 | cell counting |
Ultra-Clear Open-Top Tube, 16 x 96mm | Beckman Coulter | 361706 | collecting for the P1 EV fraction |
Ultra-Clear Tube, 14 x 89mm | Beckman Coulter | 344059 | collecting for the P2 EV fraction |
Vectastain ABC Standard Kit | Vector Laboratories | PK-4000 | immunoblotting |
Wash Bottle | As One | 1-4640-02 | washing membrane |
μ-Slide 8 Well High | ibidi | 80806 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved