A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol outlines a method for extracting and purifying micronuclei from human lymphocytes using sucrose density gradient centrifugation. It provides an experimental basis for investigating the composition and function of micronuclei.

Abstract

A micronucleus (MN) is an abnormal nuclear structure that forms in cells, particularly bone marrow or blood cells, when exposed to external damage, such as radiation, due to unresolved DNA damage or mitotic errors. Once formed, MNs can actively contribute to various carcinogenic processes, including inflammatory signaling and chromosomal genetic rearrangements. MNs contain nuclear DNA, histones, nucleoprotein fragments, and other active proteins, which are closely associated with their functions. Studying the formation and components of MNs is crucial for understanding their role in driving carcinogenic processes. The extraction and purification of MNs are essential to achieving these research objectives. However, the instability of the MN nuclear membrane and its susceptibility to rupture make these processes technically challenging. Currently, only a few studies have reported the use of density gradient centrifugation for MN separation. This study summarizes and simplifies the processes of MN separation and purification. Human peripheral blood lymphocytes exposed to radiation were isolated, and MNs were separated and purified using sucrose buffers of different concentrations in a two-step process. The integrity and purity of the MNs were verified, providing a clear and practical demonstration of the experimental procedure for researchers investigating the causes and functions of MNs.

Introduction

The micronucleus (MN) is a subcellular structure in the cytoplasm that contains nuclear DNA, histones, and nucleoprotein fragments, surrounded by membrane structures1,2. The MN is completely separate from the main nucleus and typically appears near it in an oval or circular shape, with a size ranging from 1/16 to 1/3 of the main nucleus's diameter. The formation of MNs is primarily associated with acentric chromosome fragments, chromosomal missegregation, dicentric chromosome breakage, chromosome instability, and the aggregation of double minutes (DBs)3. MNs rarely occur in healthy ....

Protocol

All experiments involving human peripheral blood samples were conducted in accordance with relevant guidelines and regulations. This study was approved by the Ethical Committee of Nuclear Industry 416 Hospital, China (2020 Review [No. 48]), and informed consent was obtained from all participants. The exclusion criteria included individuals with major chronic diseases, such as tumors, gout, or blood disorders, as well as those exposed to radioactive or genotoxic substances in their occupation. For this study, 10 mL of peripheral blood was collected from a healthy 28-year-old male into a blood collection tube containing heparin sodium as an anticoagulant. The sample was....

Results

After radiation exposure, human peripheral blood was incubated with RPMI-1640 for 60Β h, and then Cytochalasin B was added for micronucleus (MN) preparation. Lymphocytes were isolated using a lymphocyte separation solution, followed by lysis with a specially configured cell lysate and gentle homogenization in a glass homogenizer. The homogenate was mixed 1:1 with 1.8 M sucrose buffer. Unpurified micronuclei were obtained after the first sucrose density gradient centrifugation, and purified micronuclei were obtained a.......

Discussion

In this method, irradiated human peripheral blood lymphocytes were used for the isolation and purification of micronuclei (MNs). Many previous studies have reported the detailed steps for cell lysis and primary separation of MNs4,32,33,34. The cell lysis solution typically includes 0.1% NP-40 to disrupt the cell membrane while having minimal effect on the nuclear membrane, thereby preserving th.......

Disclosures

None.

Acknowledgements

All figures were created by the authors via the WPS office. This work was supported by the Natural Science Foundation of Chengdu Medical College (CYZ19-38), and the Sichuan Province Science and Technology Support Program (2024NSFSC0592).

....

Materials

NameCompanyCatalog NumberComments
15Β mL conical tubeThermo339650
4% paraformaldehyde solutionBeyotimeP0099
50Β mL conical tubeThermo339652
Anti-Ξ³-H2AX antibodyBiossbsm-52163R
Bovine serum albuminBeyotimeST023
Calcium chlorideBiosharpBS249
Cytochalasin BMacklin14930-96-2
DAPI dyeing solutionBiossS0001
DithiothreitolΒ (DTT)CoolaberCD4941
EDTABiosharpBS107Ethylene Diamine Tetraacetic Acid
Fluorescence microscopeNikonTi2-U
HomogenizerYbscienceYB101103-1(20 mL)
Horizontal controlled temperature centrifugeThermoSorvall ST1R plusBrake speed is set to "5"
Human lymphocyte separation solutionBeyotimeC0025
Magnesium acetateMacklinM833330
NP-40CoolaberSL932010% solution
Phosphate buffer solution(PBS)HyCloneSH30256.01B
Protease inhibitorsCoolaberSL1086Cocktail (100Γ—)
Secondary antibodyBiossBs-0295GGoat Anti-Rabbit IgG H&L/FITC
SpermidineCoolaberCS10431
SpermineCoolaberCS10441
SucroseCoolaberCS10581
Tris-HClBiosharpBS157
Triton X-100BeyotimeP0096

References

  1. Hatch, E. M., Fischer, A. H., Deerinck, T. J. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 154, 47-60 (2013).
  2. Liu, S., Kwon, M., Mannino, N. Nuclear envelope assembly defects link mitotic....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Micronucleusradiationdensity gradient centrifugationsucroselymphocyte

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright Β© 2025 MyJoVE Corporation. All rights reserved