A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
تم استخدام الثقافة الابتدائية الخلايا البطانية القرنية البقري للتحقيق في آلية القرنية الانتقالية البطانية الوسيطة. وعلاوة على ذلك، تم استخدام الفئران بطانة القرنية نموذج cryoinjury لإثبات القرنية الانتقالية البطانية الوسيطة في الجسم الحي.
Corneal endothelial cells (CECs) play a crucial role in maintaining corneal clarity through active pumping. A reduced CEC count may lead to corneal edema and diminished visual acuity. However, human CECs are prone to compromised proliferative potential. Furthermore, stimulation of cell growth is often complicated by gradual endothelial-mesenchymal transition (EnMT). Therefore, understanding the mechanism of EnMT is necessary for facilitating the regeneration of CECs with competent function. In this study, we prepared a primary culture of bovine CECs by peeling the CECs with Descemet's membrane from the corneal button and demonstrated that bovine CECs exhibited the EnMT process, including phenotypic change, nuclear translocation of β-catenin, and EMT regulators snail and slug, in the in vitro culture. Furthermore, we used a rat corneal endothelium cryoinjury model to demonstrate the EnMT process in vivo. Collectively, the in vitro primary culture of bovine CECs and in vivo rat corneal endothelium cryoinjury models offers useful platforms for investigating the mechanism of EnMT.
Corneal endothelial cells (CECs) play a vital role in maintaining corneal clarity and thus visual acuity by regulating the hydration status of the corneal stroma through active pumping1. Because of the limited proliferative potential of human CECs, the cell number decreases with age, and the repair of corneal endothelial wounds following injury is usually achieved through cell enlargement and migration, rather than cell mitosis2. When the CEC count decreases below a threshold of approximately 500 cells/mm2, the dehydration status of the corneal stroma cannot be maintained, leading to bullous keratopathy and vision impairment3,4.
The limited proliferative potential of human CECs has been attributed to several factors, including reduced expression of the epidermal growth factor and its receptor in aging cells5, antiproliferative TGFβ2 in the aqueous humor6, and contact inhibition2,7. Although some growth factors, such as basic fibroblast growth factor (bFGF), can increase proliferation in a cultured human corneal endothelium, the culture efficiency remains limited8,9. Furthermore, CECs may undergo a phenotypic change during ex vivo expansion, resembling epithelial-mesenchymal transition (EMT)10-13. Endothelial-mesenchymal transition (EnMT) is characterized by cell junction destabilization, apical-basal polarity loss, cytoskeletal rearrangement, alpha smooth muscle actin expression, and type I collagen secretion14. All of these characteristics may abrogate the normal function of CECs, hampering the use of ex vivo cultured CECs in tissue engineering. Moreover, EnMT has been associated with the pathogenesis of several corneal endothelial diseases, including Fuchs endothelial corneal dystrophy and retrocorneal membrane formation15,16. Therefore, understanding the mechanism of EnMT may aid in manipulating the EnMT process and facilitate the regeneration of CECs to enable competent function.
In this study, we described a method for isolating bovine CECs from the corneal button. In the primary culture in vitro, the EnMT process, including a phenotypic change, the nuclear translocation of β-catenin, and EMT regulators snail and slug, was observed. We further described a method for demonstrating EnMT in vivo by using a rat corneal endothelium cryoinjury model. Using these 2 models, we demonstrated that marimastat, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, can suppress the EnMT process. The described protocols facilitate the detailed analysis of the EnMT mechanism and the development of strategies for manipulating the EnMT process for further clinical application.
وجاءت جميع الإجراءات في هذه الدراسة يتفق مع جمعية البحوث في الرؤية والعيون بيان لاستخدام الحيوانات في العيون والبحوث الرؤية وتمت الموافقة من قبل لجنة رعاية واستخدام الحيوان المؤسسي من مستشفى جامعة تايوان الوطنية.
1. عزل، إعداد الثقافة الابتدائية، والمناعية من الأبقار CECS
نموذج 2. الجرذ القرنية البطانة Endothelium Cryoinjury وIntracameral حقن
3. حصاد الجرذ زر القرنية والمناعية
بعد عزل CECS الأبقار، كانت الخلايا المستزرعة في المختبر الشكل 1 يعرض الصور الطوري من CECS البقري. وأشار شكل سداسي الخلايا في التقاء أن الخلايا لم تكن ملوثة الليفية انسجة القرنية خلال العزلة خلية الشكل 2 يصور المناعية التي تم تنفيذ...
ومن المعروف CECS لميلها للخضوع EnMT خلال تكاثر الخلايا. لوضع استراتيجيات لقمع عملية EnMT لأغراض علاجية، فهم دقيق لآلية EnMT ضروري. وصفنا 2 نماذج للتحقيق EnMT، وهي لجنة الانتخابات المركزية البقري في نموذج الثقافة المختبر والفئران بطانة القرنية نموذج cryoinjury. أظهرت نتائ...
The authors have no competing financial interests to declare.
We thank the staff of the Second Core Lab, Department of Medical Research, National Taiwan University Hospital for their technical support.
Name | Company | Catalog Number | Comments |
trypsin | ThermoFisher Scientific | 12604-013 | |
Dulbecco’s modified Eagle medium and Ham's F12 medium | ThermoFisher Scientific | 11330 | |
fetal bovine serum | ThermoFisher Scientific | 26140-079 | |
dimethyl sulfoxide | Sigma | D2650 | |
human epidermal growth factor | ThermoFisher Scientific | PHG0311 | |
insulin, transferrin, selenium | ThermoFisher Scientific | 41400-045 | |
cholera toxin | Sigma | C8052-1MG | |
gentamicin | ThermoFisher Scientific | 15750-060 | |
amphotericin B | ThermoFisher Scientific | 15290-026 | |
paraformaldehyde | Electron Microscopy Sciences | 111219 | |
Triton X-100 | Sigma | T8787 | |
bovine serum albumin | Sigma | A7906 | |
marimastat | Sigma | M2699-25MG | |
anti-active beta-catenin antibody | Millpore | 05-665 | |
anti-snail antibody | Santa cruz | sc28199 | |
anti-slug antibody | Santa cruz | sc15391 | |
goat anti-mouse IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11001 | for staining of ABC of bovine CECs |
goat anti-mouse IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11003 | for staining of ABC of rat corneal endothelium |
goat anti-rabbit IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11008 | for staining of snail and slug of bovine CECs |
antibody diluent | Genemed Biotechnologies | 10-0001 | |
4',6-diamidino-2-phenylindole | ThermoFisher Scientific | D1306 | |
mounting medium | Vector Laboratories | H-1000 | |
laser scanning confocal microscope | ZEISS | LSM510 | |
xylazine | Bayer | N/A | |
tiletamine plus zolazepam | Virbac | N/A | veterinary drug |
proparacaine hydrochloride ophthalmic solution | Alcon | N/A | veterinary drug |
0.1% atropine | Wu-Fu Laboratories Co., Ltd | N/A | clinical drug |
0.3% gentamicin sulfate | Sinphar Group | N/A | clinical drug |
basic fibroblast growth factor | ThermoFisher Scientific | PHG0024 | clinical drug |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved