É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
A cultura primária de células endoteliais da córnea de bovino foi utilizada para investigar o mecanismo de transição endotelial-mesenquimais da córnea. Além disso, um modelo criolesão endotélio corneano de rato foi utilizado para demonstrar transição endotelial-mesenquimais da córnea in vivo.
Corneal endothelial cells (CECs) play a crucial role in maintaining corneal clarity through active pumping. A reduced CEC count may lead to corneal edema and diminished visual acuity. However, human CECs are prone to compromised proliferative potential. Furthermore, stimulation of cell growth is often complicated by gradual endothelial-mesenchymal transition (EnMT). Therefore, understanding the mechanism of EnMT is necessary for facilitating the regeneration of CECs with competent function. In this study, we prepared a primary culture of bovine CECs by peeling the CECs with Descemet's membrane from the corneal button and demonstrated that bovine CECs exhibited the EnMT process, including phenotypic change, nuclear translocation of β-catenin, and EMT regulators snail and slug, in the in vitro culture. Furthermore, we used a rat corneal endothelium cryoinjury model to demonstrate the EnMT process in vivo. Collectively, the in vitro primary culture of bovine CECs and in vivo rat corneal endothelium cryoinjury models offers useful platforms for investigating the mechanism of EnMT.
Corneal endothelial cells (CECs) play a vital role in maintaining corneal clarity and thus visual acuity by regulating the hydration status of the corneal stroma through active pumping1. Because of the limited proliferative potential of human CECs, the cell number decreases with age, and the repair of corneal endothelial wounds following injury is usually achieved through cell enlargement and migration, rather than cell mitosis2. When the CEC count decreases below a threshold of approximately 500 cells/mm2, the dehydration status of the corneal stroma cannot be maintained, leading to bullous keratopathy and vision impairment3,4.
The limited proliferative potential of human CECs has been attributed to several factors, including reduced expression of the epidermal growth factor and its receptor in aging cells5, antiproliferative TGFβ2 in the aqueous humor6, and contact inhibition2,7. Although some growth factors, such as basic fibroblast growth factor (bFGF), can increase proliferation in a cultured human corneal endothelium, the culture efficiency remains limited8,9. Furthermore, CECs may undergo a phenotypic change during ex vivo expansion, resembling epithelial-mesenchymal transition (EMT)10-13. Endothelial-mesenchymal transition (EnMT) is characterized by cell junction destabilization, apical-basal polarity loss, cytoskeletal rearrangement, alpha smooth muscle actin expression, and type I collagen secretion14. All of these characteristics may abrogate the normal function of CECs, hampering the use of ex vivo cultured CECs in tissue engineering. Moreover, EnMT has been associated with the pathogenesis of several corneal endothelial diseases, including Fuchs endothelial corneal dystrophy and retrocorneal membrane formation15,16. Therefore, understanding the mechanism of EnMT may aid in manipulating the EnMT process and facilitate the regeneration of CECs to enable competent function.
In this study, we described a method for isolating bovine CECs from the corneal button. In the primary culture in vitro, the EnMT process, including a phenotypic change, the nuclear translocation of β-catenin, and EMT regulators snail and slug, was observed. We further described a method for demonstrating EnMT in vivo by using a rat corneal endothelium cryoinjury model. Using these 2 models, we demonstrated that marimastat, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, can suppress the EnMT process. The described protocols facilitate the detailed analysis of the EnMT mechanism and the development of strategies for manipulating the EnMT process for further clinical application.
Todos os procedimentos seguidos neste estudo concedidas com a Associação de Pesquisa em Visão e Oftalmologia Declaração de Uso de Animais em Oftalmologia e Vision Research e foram aprovados pelo Comitê de Cuidado e Uso Institucional Animal do National Taiwan University Hospital.
1. Isolamento, cultura Preparação Primária e imunocoloração de Bovinos PEC
2. Rat Corneal endotélio criolesão modelo e injeção intracamerais
3. Colheita do Rato Botão de córnea e imunocoloração
Após o isolamento de PEC bovina, as células foram cultivadas in vitro. A Figura 1 apresenta as imagens de contraste de fase do PEC bovina. A forma hexagonal das células em confluência indicaram que as células não foram contaminadas pelos fibroblastos do estroma da córnea durante o isolamento de células. A Figura 2 mostra a imunocoloração que foi realizada utilizando anticorpos contra ABC, caracol, e lesma em um ponto de tempo indicado....
PEC são conhecidos pela sua propensão para sofrer EnMT durante a proliferação celular. Para desenvolver estratégias para suprimir o processo EnMT para fins terapêuticos, uma profunda compreensão do mecanismo EnMT é necessário. Nós descrevemos 2 modelos para investigar EnMT, ou seja, a CEC bovina em modelo de cultura in vitro e rato modelo criolesão endotélio corneano. Os nossos resultados demonstram o processo EnMT em ambos os modelos. Além disso, o efeito de supressão de EnMT marimastat ...
The authors have no competing financial interests to declare.
We thank the staff of the Second Core Lab, Department of Medical Research, National Taiwan University Hospital for their technical support.
Name | Company | Catalog Number | Comments |
trypsin | ThermoFisher Scientific | 12604-013 | |
Dulbecco’s modified Eagle medium and Ham's F12 medium | ThermoFisher Scientific | 11330 | |
fetal bovine serum | ThermoFisher Scientific | 26140-079 | |
dimethyl sulfoxide | Sigma | D2650 | |
human epidermal growth factor | ThermoFisher Scientific | PHG0311 | |
insulin, transferrin, selenium | ThermoFisher Scientific | 41400-045 | |
cholera toxin | Sigma | C8052-1MG | |
gentamicin | ThermoFisher Scientific | 15750-060 | |
amphotericin B | ThermoFisher Scientific | 15290-026 | |
paraformaldehyde | Electron Microscopy Sciences | 111219 | |
Triton X-100 | Sigma | T8787 | |
bovine serum albumin | Sigma | A7906 | |
marimastat | Sigma | M2699-25MG | |
anti-active beta-catenin antibody | Millpore | 05-665 | |
anti-snail antibody | Santa cruz | sc28199 | |
anti-slug antibody | Santa cruz | sc15391 | |
goat anti-mouse IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11001 | for staining of ABC of bovine CECs |
goat anti-mouse IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11003 | for staining of ABC of rat corneal endothelium |
goat anti-rabbit IgG (H+L) secondary antibody | ThermoFisher Scientific | A-11008 | for staining of snail and slug of bovine CECs |
antibody diluent | Genemed Biotechnologies | 10-0001 | |
4',6-diamidino-2-phenylindole | ThermoFisher Scientific | D1306 | |
mounting medium | Vector Laboratories | H-1000 | |
laser scanning confocal microscope | ZEISS | LSM510 | |
xylazine | Bayer | N/A | |
tiletamine plus zolazepam | Virbac | N/A | veterinary drug |
proparacaine hydrochloride ophthalmic solution | Alcon | N/A | veterinary drug |
0.1% atropine | Wu-Fu Laboratories Co., Ltd | N/A | clinical drug |
0.3% gentamicin sulfate | Sinphar Group | N/A | clinical drug |
basic fibroblast growth factor | ThermoFisher Scientific | PHG0024 | clinical drug |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados