A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
بروتوكول لإعداد بولي (بينتافلوروفينيل أكريلاتي) (poly(PFPA)) المطعمة والسليكا الخرز يرد. سطح فونكتيوناليزيد poly(PFPA) ثم المعطل تداولها مع الأجسام المضادة واستخدمت بنجاح لفصل البروتين من خلال إيمونوبريسيبيتيشن.
ندلل على طريقة بسيطة لتحضير بولي (بينتافلوروفينيل أكريلاتي) (poly(PFPA)) المطعمة الخرز السليكا لتجميد جسم وتطبيق إيمونوبريسيبيتيشن اللاحقة (IP). يتم إعداد السطح المطعمة poly(PFPA) عن طريق عملية من خطوتين بسيطة. في الخطوة الأولى، وتودع 3-أمينوبروبيلتريثوكسيسيلاني (أبتيس) كجزيء رابط على سطح السليكا. في الخطوة الثانية، هي المطعمة بولي poly(PFPA)، تصنيعه عن طريق إضافة عكسها، وتجزئة سلسلة نقل (الطوافة) البلمرة، للجزيء رابط من خلال رد فعل التبادل بين الوحدات بينتافلوروفينيل (الشراكة من أجل السلام) على بوليمر والمجموعات أمين على أبتيس. أبتيس و poly(PFPA) على السيليكا الجسيمات هي تؤكدها مطيافية الأشعة السينية النانومترية (XPS)، فضلا عن رصد بتغير حجم الجسيمات يقاس عن طريق نثر الضوء الحيوي (DLS). تحسين hydrophilicity السطحية من الخرز، الاستعاضة الجزئية من poly(PFPA) مع poly(ethylene glycol) فونكتيوناليزيد أمين (الأمينية شماعة) يتم أيضا. Poly(PFPA) محل شماعة المطعمة والسليكا ثم هي معطلة الخرز مع الأجسام المضادة لتطبيق الملكية الفكرية. للمظاهرة، يعمل جسم مضاد ضد كيناز البروتين المنشط الحمض النووي الريبي (PKR)، وتتحدد كفاءة الملكية الفكرية النشاف الغربية. وتظهر نتائج التحليل أن الخرز جسم معطلة يمكن استخدامها في الواقع لإثراء روبية باكستانية بينما تفاعلات البروتين غير محددة الحد الأدنى.
فرش البوليمر رد الفعل قد تلقي الكثير من الاهتمام في السنوات الأخيرة. يمكن استخدامها لشل الجزيئات الوظيفية على المواد العضوية أو غير العضوية لإنشاء الأسطح المنشط مع تطبيقات في مجالات مثل الكشف والفصل1،2،،من34، 5. بين البوليمرات المتفاعلة التي ذكرت، تلك التي تحتوي على وحدات إستر بينتافلوروفينيل مفيدة بشكل خاص سبب بهم تفاعلية عالية مع الأمينات والمقاومة تجاه التحلل6. واحد هذه البوليمرات poly(PFPA)، ويمكن أن يكون فونكتيوناليزيد سهولة البلمرة اللاحقة مع الجزيئات المحتوية على الأمينات الأولية أو الثانوية7،،من89،10. وفي أحد الأمثلة، كانت رد فعل فرش poly(PFPA) الأمينية سبيروبيرانس لإنشاء الأسطح تستجيب للضوء7.
وقد وصف إعداد poly(PFPA) وتطبيقاتها في عدد من السابقة المنشورات6،،من78،،من910،11،12 ،13،،من1415،،من1617. على وجه الخصوص، أفادت تيتو وزملاء العمل تركيب فرش poly(PFPA) عبر كل "التطعيم إلى" و "التطعيم من" أساليب7،،من810،،من1112 . في "التطعيم إلى" النهج، بولي (ميثيلسيلسيسكويوكساني)-بولي (بينتافلوروفينيل أكريلاتي) (poly(MSSQ-PFPA)) المختلطة البوليمر كان المركب8،10،،من1112. المكون poly(MSSQ) كان قادراً على شكل التصاق قوية مع عدد من الأسطح المختلفة العضوية وغير العضوية، مما يسمح لعنصر poly(PFPA) تشكل طبقة فرشاة على سطح المواد المغلفة. في "التطعيم من" النهج، بدأ سطح إضافة عكسها وتجزئة سلسلة البلمرة نقل (SI-طوف) كان يعمل على إعداد poly(PFPA) فرش7. وفي هذه الحالة، عامل نقل سلسلة المعطل تداولها سطحية (SI-كبار المستشارين التقنيين) أولاً تعلق تساهمي على الركيزة عن طريق تفاعل السليكا-سيلاني. ثم شارك المعطل تداولها SI-كبار المستشارين التقنيين في البلمرة SI-طوف من مونومرات بفبا، توليد فرش poly(PFPA) كثافة مع الروابط التساهمية مستقرة للركيزة.
باستخدام الفرش poly(PFPA) توليفها عبر البلمرة SI-طوف، أظهرنا مؤخرا تجميد الأجسام المضادة جزيئات السليكا poly(PFPA) المطعمة وتطبيقها فيما بعد في تنقية البروتين18. تم العثور على استخدام فرش poly(PFPA) لتجميد جسم لحل عدد من المسائل المرتبطة بفصل البروتين الحالية من خلال الملكية الفكرية. الملكية الفكرية التقليدية التي تعتمد على استخدام البروتين A/G كرابط لجسم التثبيت19،،من2021. حيث يتيح استخدام البروتين A/G الأجسام المضادة التي يتم إرفاقها مع اتجاه محدد، هو تحقيق الكفاءة الانتعاش مستضد الهدف السامي. ومع ذلك، استخدام البروتين A/G يعاني من التفاعل البروتين غير محددة، فضلا عن فقدان الأجسام المضادة أثناء استرداد البروتين، التي تسهم في ارتفاع مستوى الضوضاء الخلفية. وقد crosslinking المباشرة للأجسام المضادة لدعم متين لحل أوجه القصور هذه، استكشفت22،،من2324. كفاءة هذه التقنيات منخفضة عادة بسبب التوجه العشوائي للأجسام المضادة كروسلينكيد. للركيزة poly(PFPA) المطعمة، تجميد للأجسام المضادة الدائمة، يتحقق من خلال رد فعل التبادل بين وحدات الشراكة من أجل السلام ووظائف أمين على أجسام. على الرغم من اتجاه جسم لا تزال عشوائية، يستفيد النظام من وجود كثير من رد الفعل الشراكة من أجل السلام من المواقع، يمكن التحكم بدرجة البلمرة. وعلاوة على ذلك، أظهرنا أن بالاستعاضة الجزئية لوحدات الشراكة من أجل السلام مع الأمينية شماعة، hydrophilicity السطحية يمكن ضبطها، مواصلة تحسين كفاءة نظام18استرداد البروتين. عموما، عرضت جزيئات السليكا المطعمة poly(PFPA) أن يكون بديل فعال للملكية الفكرية التقليدية بكفاءة معقولة، فضلا عن خلفية أنظف كثيرا.
في هذه المساهمة، يمكننا تقرير طريقة بديلة لإعداد سطح المطعمة poly(PFPA) لتجميد جسم وتطبيق الملكية الفكرية. في عملية من خطوتين بسيطة، كما هو مبين في الشكل 1، جزيء رابط أبتيس هو أولاً المودعة على سطح السليكا، ثم البوليمر poly(PFPA) تساهمي موصولة إلى جزيء رابط من خلال التفاعل بين وحدات الشراكة من أجل السلام على بوليمر ومهام أمين على أبتيس. هذا الأسلوب إعداد يسمح ل crosslinking الدائم من poly(PFPA) على سطح الركازة، لكن تجنب كثير من المضاعفات المرتبطة مع توليف SI-كبار المستشارين التقنيين والبلمره SI-طوف من فرش poly(PFPA). لا تزال تتم الاستعاضة الجزئية لوحدات الشراكة من أجل السلام مع الأمينية شماعة، السماح لصقل الخصائص السطحية فرشاة البوليمر. نعرض الخرز السليكا المطعمة poly(PFPA) وهكذا أعد يمكن المعطل تداولها مع الأجسام المضادة وتستخدم لتخصيب البروتين عن طريق الملكية الفكرية. الإجراء إعداد حبة مفصلة وتجميد جسم، واختبار الملكية الفكرية موثقة في هذه المقالة، للقراء المهتمين في البحث عن بديل للبروتين التقليدية A/G القائمة على الملكية الفكرية.
Access restricted. Please log in or start a trial to view this content.
1-إعداد بولي Poly(PFPA)
2-إعداد Poly(PFPA) فونكتيوناليزيد SiO2 حبات
3-إعداد SiO2 حبات المطعمة بالاستعاضة عن شماعة Poly(PFPA)
4-جسم التثبيت على Poly(PFPA) المطعمة SiO2 حبات
ملاحظة: يتم استخدام نفس الإجراء بغض النظر عن نسبة استبدال شماعة في poly(PFPA). تحضير فوسفات مخزنة المالحة (PBS) بإذابة قرص برنامج تلفزيوني في إصلاح. إعداد 0.1% (v/v) الفوسفات مخزنة المالحة مع توين-20 (ببست) بإضافة 1/1000 من توين-20 لبرنامج تلفزيوني.
5-خلية تفسخ وإيمونوبريسيبيتيشن
Access restricted. Please log in or start a trial to view this content.
تخطيطي لإعداد poly(PFPA) المطعمة SiO2 حبات، مع أو دون شماعة الاستبدال ويرد في الشكل 1. رصد أبتيس وتطعيم العملية، الخرز2 SiO العارية، poly(PFPA) فونكتيوناليزيد أبتيس SiO2 الخرز، والمطعمة poly(PFPA) SiO2 حبات تتميز بدائرة الأراضي والمساحة (الش...
Access restricted. Please log in or start a trial to view this content.
توليف poly(PFPA) المطعمة SiO2 حبات يتضح في الشكل 1. باستخدام أبتيس كجزيء رابط، يمكن إعداد فرش poly(PFPA) تساهمي المطعمة ب SiO2 الركيزة عن طريق عملية من خطوتين بسيطة. على الرغم من أن بعض الوحدات الشراكة من أجل السلام هي التضحية للتفاعل مع أبتيس، عدد كبير من الوحدات الشراكة من أ...
Access restricted. Please log in or start a trial to view this content.
الكتاب ليس لها علاقة بالكشف عن.
هذا العمل كان تدعمها الوكالة "تطوير الدفاع" (رقم المنحة UD170039ID).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
2,2-Azobisisobutyronitrile, 99% | Daejung Chemicals | 1102-4405 | |
Methyl alcohol for HPLC, 99.9% | Duksan Pure Chemicals | d62 | |
Phenylmagnesium bromide solution 1.0 M in THF | Sigma-Aldrich | 331376 | |
Carbon disulfide anhydrous, ≥99% | Sigma-Aldrich | 335266 | |
Benzyl bromide, 98% | Sigma-Aldrich | B17905 | |
Petroleum ether, 90% | Samchun Chemicals | P0220 | |
Ethyl ether, 99% | Daejung Chemicals | 4025-4404 | |
Magnesium sulfate anhydrous, powder, 99% | Daejung Chemicals | 5514-4405 | |
Pentafluorophenyl acrylate | Santa Cruz Biotechnology | sc-264001 | contains inhibitor |
Aluminium oxide, activated, basic, Brockmann I | Sigma-Aldrich | 199443 | |
Sodium Chloride (NaCl) | Daejung Chemicals | 7548-4400 | |
Anisole anhydrous, 99.7% | Sigma-Aldrich | 296295 | |
Silica nanoparticle | Microparticles GmbH | SiO2-R-0.7 | 5% w/v aqueous suspension |
3-Aminopropyltrimethoxysilane, >96.0% | Tokyo Chemical Industry | T1255 | |
Dimethyl sulfoxide for HPLC, ≥99.7% | Sigma-Aldrich | 34869 | |
Amino-terminated poly(ethylene glycol) methyl ether | Polymer Source | P16082-EGOCH3NH2 | |
Phosphate buffered saline tablet | Takara | T9181 | |
Tween-20 | Calbiochem | 9480 | |
Tris-HCl (pH 8.0) | Invitrogen | AM9855G | |
KCl | Invitrogen | AM9640G | |
NP-40 | VWR | E109-50ML | |
Glycerol | Invitrogen | 15514-011 | |
Dithiothreitol | Biosesang | D1037 | |
Protease inhibitor | Merck | 535140-1MLCN | |
Bromo phenol blue | Sigma-Aldrich | B5525-5G | |
Tris-HCl (pH 6.8) | Biosolution | BT033 | |
Sodium dodecyl sulfate | Biosolution | BS003 | |
2-Mercaptoethanol | Gibco | 21985-023 | |
PKR Antibody | Cell Signaling Technology | 12297S | |
GAPDH Antibody | Santa Cruz Biotechnology | sc-32233 | |
Normal Rabbit IgG | Cell Signaling Technology | 2729S | |
HeLa | Korea Cell Line Bank | 10002 | |
Sonicator | DAIHAN Scientific | WUC-D10H | |
Ultrasonicator | BMBio | BR2006A | |
Centrifuge I | Eppendorf | 5424 R | |
Centrifuge II | LABOGENE | 1736R | |
Rotator | FINEPCR | ROTATOR/AG | |
Vacuum oven | DAIHAN Scientific | ThermoStable OV-30 | |
Gel permeation chromatography (THF) | Agilent Technologies | 1260 Infinity II | |
X-ray photoelectron spectrometer | Thermo VG Scientific | Sigma Probe | |
Dynamic light scattering | Malvern Instruments | ZEN 3690 |
Access restricted. Please log in or start a trial to view this content.
An erratum was issued for: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. Throughout the article, the term "3-aminopropyltriethoxysilane" has been replaced with "3-aminopropyltrimethoxysilane", and "APTES" with "APTMS".
The Keywords were updated from:
Poly(pentafluorophenyl acrylate), 3-aminopropyltriethoxysilane, reactive polymer brush, post-polymerization functionalization, antibody immobilization, immunoprecipitation
to:
Poly(pentafluorophenyl acrylate), 3-aminopropyltrimethoxysilane, reactive polymer brush, post-polymerization functionalization, antibody immobilization, immunoprecipitation
The Abstract was updated from:
We demonstrate a simple method to prepare poly(pentafluorophenyl acrylate) (poly(PFPA)) grafted silica beads for antibody immobilization and subsequent immunoprecipitation (IP) application. The poly(PFPA) grafted surface is prepared via a simple two-step process. In the first step, 3-aminopropyltriethoxysilane (APTES) is deposited as a linker molecule onto the silica surface. In the second step, poly(PFPA) homopolymer, synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization, is grafted to the linker molecule through the exchange reaction between the pentafluorophenyl (PFP) units on the polymer and the amine groups on APTES. The deposition of APTES and poly(PFPA) on the silica particles are confirmed by X-ray photoelectron spectroscopy (XPS), as well as monitored by the particle size change measured via dynamic light scattering (DLS). To improve the surface hydrophilicity of the beads, partial substitution of poly(PFPA) with amine-functionalized poly(ethylene glycol) (amino-PEG) is also performed. The PEG-substituted poly(PFPA) grafted silica beads are then immobilized with antibodies for IP application. For demonstration, an antibody against protein kinase RNA-activated (PKR) is employed, and IP efficiency is determined by Western blotting. The analysis results show that the antibody immobilized beads can indeed be used to enrich PKR while non-specific protein interactions are minimal.
to:
We demonstrate a simple method to prepare poly(pentafluorophenyl acrylate) (poly(PFPA)) grafted silica beads for antibody immobilization and subsequent immunoprecipitation (IP) application. The poly(PFPA) grafted surface is prepared via a simple two-step process. In the first step, 3-aminopropyltrimethoxysilane (APTMS) is deposited as a linker molecule onto the silica surface. In the second step, poly(PFPA) homopolymer, synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization, is grafted to the linker molecule through the exchange reaction between the pentafluorophenyl (PFP) units on the polymer and the amine groups on APTMS. The deposition of APTMS and poly(PFPA) on the silica particles are confirmed by X-ray photoelectron spectroscopy (XPS), as well as monitored by the particle size change measured via dynamic light scattering (DLS). To improve the surface hydrophilicity of the beads, partial substitution of poly(PFPA) with amine-functionalized poly(ethylene glycol) (amino-PEG) is also performed. The PEG-substituted poly(PFPA) grafted silica beads are then immobilized with antibodies for IP application. For demonstration, an antibody against protein kinase RNA-activated (PKR) is employed, and IP efficiency is determined by Western blotting. The analysis results show that the antibody immobilized beads can indeed be used to enrich PKR while non-specific protein interactions are minimal.
The fourth paragraph of the Introduction was updated from:
In this contribution, we report an alternative method to prepare poly(PFPA) grafted surface for antibody immobilization and IP application. In a simple two-step process, as illustrated in Figure 1, an APTES linker molecule is first deposited onto the silica surface, then the poly(PFPA) polymer is covalently attached to the linker molecule through the reaction between the PFP units on the polymer and the amine functions on APTES. This preparation method allows for the permanent crosslinking of poly(PFPA) to a substrate surface, but avoids the many complications associated with SI-CTA synthesis and SI-RAFT polymerization of poly(PFPA) brushes. Partial substitution of the PFP units with amino-PEG can still be performed, allowing fine-tuning of the polymer brush surface properties. We show the poly(PFPA) grafted silica beads thus prepared can be immobilized with antibodies and used for protein enrichment via IP. The detailed bead preparation procedure, antibody immobilization, and IP testing are documented in this article, for readers interested in seeking an alternative to conventional Protein A/G based IP.
to:
In this contribution, we report an alternative method to prepare poly(PFPA) grafted surface for antibody immobilization and IP application. In a simple two-step process, as illustrated in Figure 1, an APTMS linker molecule is first deposited onto the silica surface, then the poly(PFPA) polymer is covalently attached to the linker molecule through the reaction between the PFP units on the polymer and the amine functions on APTMS. This preparation method allows for the permanent crosslinking of poly(PFPA) to a substrate surface, but avoids the many complications associated with SI-CTA synthesis and SI-RAFT polymerization of poly(PFPA) brushes. Partial substitution of the PFP units with amino-PEG can still be performed, allowing fine-tuning of the polymer brush surface properties. We show the poly(PFPA) grafted silica beads thus prepared can be immobilized with antibodies and used for protein enrichment via IP. The detailed bead preparation procedure, antibody immobilization, and IP testing are documented in this article, for readers interested in seeking an alternative to conventional Protein A/G based IP.
Step 2.1 of the Protocol was updated from:
Treatment of SiO2 beads with APTES
to:
Treatment of SiO2 beads with APTMS
Step 2.1.1 of the Protocol was updated from:
SiO2 particles are available in the form of a 5% (w/v) aqueous suspension. Combine 0.8 mL of SiO2 suspension with 40 mg of APTES and 8 mL of methanol in a 20 mL scintillation vial equipped with a stir bar.
to:
SiO2 particles are available in the form of a 5% (w/v) aqueous suspension. Combine 0.8 mL of SiO2 suspension with 40 mg of APTMS and 8 mL of methanol in a 20 mL scintillation vial equipped with a stir bar.
Step 2.1.3 of the Protocol was updated from:
Transfer the solution to a conical tube. To isolate the APTES functionalized SiO2 beads, centrifuge the solution at 10,000 x g for 5 min, then remove the supernatant. Wash the beads by re-dispersing them in 3 mL of fresh methanol. Shake the tube by hand for mixing, but if necessary, improve the dispersion by sonication in a water bath for a few seconds. Centrifuge the beads at 10,000 x g for 5 min. Remove the supernatant and repeat the wash step one more time.
to:
Transfer the solution to a conical tube. To isolate the APTMS functionalized SiO2 beads, centrifuge the solution at 10,000 x g for 5 min, then remove the supernatant. Wash the beads by re-dispersing them in 3 mL of fresh methanol. Shake the tube by hand for mixing, but if necessary, improve the dispersion by sonication in a water bath for a few seconds. Centrifuge the beads at 10,000 x g for 5 min. Remove the supernatant and repeat the wash step one more time.
Step 2.1.4 of the Protocol was updated from:
Combine the methanol washed SiO2 beads with 3 mL of dimethyl sulfoxide (DMSO). Shake the mixture by hand, or if necessary sonicate for a few seconds, until the beads are fully dispersed in DMSO. Centrifuge the beads at 10,000 x g for 5 min, then remove the supernatant. Repeat the step to ensure complete solvent exchange from methanol to DMSO.to:
Combine the methanol washed SiO2 beads with 3 mL of dimethyl sulfoxide (DMSO). Shake the mixture by hand, or if necessary sonicate for a few seconds, until the beads are fully dispersed in DMSO. Centrifuge the beads at 10,000 x g for 5 min, then remove the supernatant. Repeat the step to ensure complete solvent exchange from methanol to DMSO.
NOTE: The final suspension contains the APTMS functionalized SiO2 beads dispersed in 4 mL of DMSO.
Step 2.2 of the Protocol was updated from:
Grafting poly(PFPA) to APTES functionalized SiO2 beads
to:
Grafting poly(PFPA) to APTMS functionalized SiO2 beads
Step 2.2.2 of the Protocol was updated from:
Add 1 mL of APTES functionalized SiO2 beads suspended in DMSO (from Step 2.1.4) to the poly(PFPA) solution. React at RT for 1 h with vigorous stirring.
to:
Add 1 mL of APTMS functionalized SiO2 beads suspended in DMSO (from Step 2.1.4) to the poly(PFPA) solution. React at RT for 1 h with vigorous stirring.
Step 3.4 of the Protocol was updated from:
To prepare APTES functionalized SiO2 beads suspended in DMSO, follow the same steps shown in Step 2.1. Transfer 1 mL of the bead suspension into the PEG-substituted poly(PFPA) solution prepared in Step 3.3. Allow the grafting between poly(PFPA) and APTES functionalized SiO2 beads to proceed at RT for 1 h with vigorous stirring.
to:
To prepare APTMS functionalized SiO2 beads suspended in DMSO, follow the same steps shown in Step 2.1. Transfer 1 mL of the bead suspension into the PEG-substituted poly(PFPA) solution prepared in Step 3.3. Allow the grafting between poly(PFPA) and APTMS functionalized SiO2 beads to proceed at RT for 1 h with vigorous stirring.
The first paragraph of the Representative Results was updated from:
A schematic for the preparation of poly(PFPA) grafted SiO2 beads, with or without PEG substitution is shown in Figure 1. To monitor the APTES and poly(PFPA) grafting process, bare SiO2 beads, APTES functionalized SiO2 beads, and poly(PFPA) grafted SiO2 beads are characterized by both DLS (Figure 2) and XPS (Figure 3). IP efficiencies of the beads are determined by Western blotting. Figure 4 shows the Western blotting results for IP using 1% PEG-substituted poly(PFPA) grafted beads, where the beads are incubated with no antibody, a non-specific antibody, or anti-PKR antibody. Figure 5 shows the Western blotting results for IP using 0% PEG-substituted poly(PFPA) grafted beads and 1% PEG-substituted poly(PFPA) grafted beads, both incubated with anti-PKR antibodies.
to:
A schematic for the preparation of poly(PFPA) grafted SiO2 beads, with or without PEG substitution is shown in Figure 1. To monitor the APTMS and poly(PFPA) grafting process, bare SiO2 beads, APTMS functionalized SiO2 beads, and poly(PFPA) grafted SiO2 beads are characterized by both DLS (Figure 2) and XPS (Figure 3). IP efficiencies of the beads are determined by Western blotting. Figure 4 shows the Western blotting results for IP using 1% PEG-substituted poly(PFPA) grafted beads, where the beads are incubated with no antibody, a non-specific antibody, or anti-PKR antibody. Figure 5 shows the Western blotting results for IP using 0% PEG-substituted poly(PFPA) grafted beads and 1% PEG-substituted poly(PFPA) grafted beads, both incubated with anti-PKR antibodies.
Figure 1 was updated from:
Figure 1: Schematic for the preparation of poly(PFPA) grafted SiO2 beads using APTES as a linker molecule. (a) Poly(PFPA) grafted beads. (b) Partially PEG-substituted poly(PFPA) grafted beads.
to:
Figure 1: Schematic for the preparation of poly(PFPA) grafted SiO2 beads using APTMS as a linker molecule. (a) Poly(PFPA) grafted beads. (b) Partially PEG-substituted poly(PFPA) grafted beads.
Figure 2 was updated from:
Figure 2: DLS measurements for (a) bare SiO2 beads (SiO2), (b) APTES functionalized SiO2 beads (APTES-SiO2), and (c) poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2), dispersed in DMSO. The Z-average diameter (d) and polydispersity index (PDI) of each sample are reported.
to:
Figure 2: DLS measurements for (a) bare SiO2 beads (SiO2), (b) APTMS functionalized SiO2 beads (APTMS-SiO2), and (c) poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2), dispersed in DMSO. The Z-average diameter (d) and polydispersity index (PDI) of each sample are reported.
Figure 3 was updated from:
Figure 3: XPS spectra for bare SiO2 beads (SiO2), APTES functionalized SiO2 beads (APTES-SiO2), and poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2). The peaks examined correspond to (a) Si 2p, (b) O 1s, (c) N 1s, and (d) F 1s.
to:
Figure 3: XPS spectra for bare SiO2 beads (SiO2), APTMS functionalized SiO2 beads (APTMS-SiO2), and poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2). The peaks examined correspond to (a) Si 2p, (b) O 1s, (c) N 1s, and (d) F 1s.
The first and second paragraphs of the Discussion were updated from:
The synthesis of poly(PFPA) grafted SiO2 beads is illustrated in Figure 1. By employing APTES as a linker molecule, poly(PFPA) brushes covalently grafted to SiO2 substrate can be prepared via a simple two-step process. Although some of the PFP units are sacrificed for the reaction with APTES, a large number of the PFP units are expected to remain available for later reaction with either amino-PEG or antibodies. The PFP groups are known to form low energy surfaces so poly(PFPA) brushes do not solvate well in water28. For IP application, the antibodies need to be immobilized on the poly(PFPA) brushes, and this exchange reaction is done in aqueous buffer solution in order to preserve the activity of the antibodies. As reported in our previous publication, partial substitution of the PFP units with hydrophilic molecules such as amine-functionalized PEG can improve surface hydrophilicity, leading to increased antibody immobilization efficiency18. In this study, partially PEG substituted poly(PFPA) is also prepared, then grafted to the SiO2 surface using the same APTES linker molecule. Overall, the methods illustrated in Figure 1 allow the preparation of poly(PFPA) grafted surfaces with different degrees of PEG substitution. These polymer brushes with tunable surface properties provide an ideal platform for antibody immobilization and subsequent IP application.
The bead preparation process is monitored by both DLS and XPS. The DLS results for various functionalized SiO2 beads in DMSO are summarized in Figure 2. The bare SiO2 beads exhibit hydrodynamic diameter of 666 nm, in agreement with the manufacturer reported bead size (0.676 μm; SD = 0.03 μm). After APTES treatment, the bead diameter increases to 740 nm; and with poly(PFPA) treatment, the bead diameter further increases to 1889 nm. It is important to point out that the polydispersity index (PDI) for the poly(PFPA) grafted beads is rather large (PDI = 0.76), which is indicative of poor quality sample containing large aggregates. Although the DLS curve only shows one nano-sized peak, small amount of aggregates may be present in the suspension. The functionalized SiO2 beads are also examined by XPS to determine surface composition (Figure 3). Following APTES treatment, N 1s peak associated with the amine groups on APTES is detected. And, following poly(PFPA) treatment, F 1s peak associated with the PFP units on the polymer is detected. Together these data show the successful functionalization of the SiO2 surface, first with APTES, then with poly(PFPA).
to:
The synthesis of poly(PFPA) grafted SiO2 beads is illustrated in Figure 1. By employing APTMS as a linker molecule, poly(PFPA) brushes covalently grafted to SiO2 substrate can be prepared via a simple two-step process. Although some of the PFP units are sacrificed for the reaction with APTMS, a large number of the PFP units are expected to remain available for later reaction with either amino-PEG or antibodies. The PFP groups are known to form low energy surfaces so poly(PFPA) brushes do not solvate well in water28. For IP application, the antibodies need to be immobilized on the poly(PFPA) brushes, and this exchange reaction is done in aqueous buffer solution in order to preserve the activity of the antibodies. As reported in our previous publication, partial substitution of the PFP units with hydrophilic molecules such as amine-functionalized PEG can improve surface hydrophilicity, leading to increased antibody immobilization efficiency18. In this study, partially PEG substituted poly(PFPA) is also prepared, then grafted to the SiO2 surface using the same APTMS linker molecule. Overall, the methods illustrated in Figure 1 allow the preparation of poly(PFPA) grafted surfaces with different degrees of PEG substitution. These polymer brushes with tunable surface properties provide an ideal platform for antibody immobilization and subsequent IP application.
The bead preparation process is monitored by both DLS and XPS. The DLS results for various functionalized SiO2 beads in DMSO are summarized in Figure 2. The bare SiO2 beads exhibit hydrodynamic diameter of 666 nm, in agreement with the manufacturer reported bead size (0.676 μm; SD = 0.03 μm). After APTMS treatment, the bead diameter increases to 740 nm; and with poly(PFPA) treatment, the bead diameter further increases to 1889 nm. It is important to point out that the polydispersity index (PDI) for the poly(PFPA) grafted beads is rather large (PDI = 0.76), which is indicative of poor quality sample containing large aggregates. Although the DLS curve only shows one nano-sized peak, small amount of aggregates may be present in the suspension. The functionalized SiO2 beads are also examined by XPS to determine surface composition (Figure 3). Following APTMS treatment, N 1s peak associated with the amine groups on APTMS is detected. And, following poly(PFPA) treatment, F 1s peak associated with the PFP units on the polymer is detected. Together these data show the successful functionalization of the SiO2 surface, first with APTMS, then with poly(PFPA).
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved