Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
Poli (pentafluorophenyl akrilat) hazırlanması için bir protokol (aşılı poly(PFPA)) silika boncuk sunulur. Poly(PFPA) functionalized yüzey o zaman ile antikorlar immobilize ve başarıyla immunoprecipitation yoluyla protein ayrılması için kullanılır.
Biz poli (pentafluorophenyl akrilat) hazırlamak için basit bir yöntem göstermek (poly(PFPA)) aşılı silis boncuk antikor immobilizasyon ve sonraki immunoprecipitation (IP) uygulama için. Poly(PFPA) aşılı yüzey yolu ile basit bir işlemdir hazırlanır. İlk adımda, 3-aminopropyltriethoxysilane (APTES) silis yüzeyine bir bağlayıcı molekül olarak yatırılır. İkinci adımda, poly(PFPA) homopolymer, tersine çevrilebilir toplama ve parçalanma zincir transfer (Sal) polimerizasyonu, yolu ile sentezlenmiş aracılığıyla exchange tepki pentafluorophenyl (Bio) birimler arasında bağlayıcı molekül için üzerine aşılı Polimer ve APTES Amin gruplarında. Devrilmesinden sonra APTES ve poly(PFPA) silika partikülleri x-ışını photoelectron spektroskopisi (XPS) tarafından teyit yanı sıra parçacık Boyut değişikliği tarafından izlenen üzerinde dinamik ışık saçılma (DL) ile ölçülür. Boncuklar, kısmi ikame poly(PFPA) Amin functionalized poly(ethylene glycol) ile yüzey hydrophilicity geliştirmek için (amino-PEG) de gerçekleştirilir. PEG yerine poly(PFPA) boncuk sonra ile IP uygulama için antikorlar immobilize silis aşılı. Gösteri, bir antikor protein kinaz RNA-harekete geçirmek (PKR) karşı istihdam ve IP etkinliği Western blot tarafından belirlenir. Çözümleme sonuçlarını immobilize antikor boncuk gerçekten de non-spesifik protein etkileşimleri çok az olmakla birlikte PKR zenginleştirmek için kullanılabileceğini göstermektedir.
Reaktif polimer fırçaları çok ilgi son yıllarda almış. Algılama ve ayırma1,2,3,4gibi alanlarda uygulamaları ile aktif yüzey oluşturmak için organik veya inorganik malzemeler üzerinde fonksiyonel molekülleri hareketsiz için kullanılabilir, 5. Rapor reaktif polimerler arasında pentafluorophenyl ester birimleri içeren aminler ve direnç hidroliz6doğru onların yüksek reaktivite nedeniyle özellikle yararlı olur. Böyle bir polimer poly(PFPA) ve birincil veya İkincil aminler7,8,9,10içeren moleküller ile kolayca functionalized sonrası polimerizasyon olabilir. Bir örnekte, poly(PFPA) fırçalar amino-ışık duyarlı yüzeyler7oluşturmak için spiropyrans ile tepki.
Poly(PFPA) ve uygulamaları hazırlanması, önceki yayınları6,7,8,9,10,11,12 sayısında açıklanan ,13,14,15,16,17. Özellikle, Theato ve iş poly(PFPA) fırçalar "aşılama" hem de "dan aşılama yöntemleri7,8,10,11,12" ile sentezi bildirdi . "İçin yaklaşım, bir poli (methylsilsesquioxane) aşılama" içinde-poli (pentafluorophenyl akrilat) (poly(MSSQ-PFPA)) Hibrit Polimer sentez8,10,11,12oldu. Poly(MSSQ) bileşeni ile bir dizi farklı organik ve inorganik yüzeyler, böylece kaplanmış malzeme yüzeyinde bir fırça katman oluşturmak poly(PFPA) bileşen izin formu güçlü yapışma başardı. "Üzerinden yaklaşım aşılama", tersinir ek yüzey başlatılan ve parçalanma zincir transfer (SI-sal) polimerizasyon poly(PFPA) fırçalar7hazırlamak için kullanıldı. Bu durumda, bir yüzey immobilize zinciri Aktarım Aracısı (SI-CTA) ilk kovalent substrat silis-silane reaksiyon ile bağlı. İmmobilize SI-CTA substrat için kararlı kovalent bağ ile yoğun paketlenmiş poly(PFPA) fırçalar üreten PFPA monomerleri, SI-Sal polimerizasyon daha sonra katıldı.
SI-Sal polimerizasyonu sentez poly(PFPA) fırçalar kullanarak, biz son zamanlarda antikorlar aşılı poly(PFPA) silika partikülleri ve protein saflaştırma18sonraki uygulama onların immobilizasyon gösterdi. Poly(PFPA) fırçalar kullanıma antikor immobilizasyon IP üzerinden geçerli protein ayırma ile ilgili konularda bir dizi çözmek için bulundu. Geleneksel IP antikor immobilizasyon19,20,21Protein A/bir bağlayıcı G kullanımına dayanır. Belirli bir yönlendirme ile bağlanmak antikor Protein A/G kullanımı sağlar beri yüksek hedef antijen kurtarma verimliliği elde edilir. Ancak, Protein A/G kullanımı ikisi de arka plan gürültü yüksek bir düzeyde katkıda protein kurtarma sırasında--dan non-spesifik protein etkileşim hem hem antikorlar kaybına uğrar. Bu eksiklikleri gidermek için sağlam bir destek için antikorlar doğrudan polietilenin keşfedilmeyi22,23,24oldu. Bu tür teknikler verimliliğini çapraz antikorlar rasgele yönelimi nedeniyle genellikle düşüktür. Aşılı poly(PFPA) substrat için antikorlar immobilizasyon Satım tepki Bio birimleri ve amin functionalities antikorlar tarih arasında yoluyla elde, kalıcıdır. Antikor yönelimi hala rasgele olsa da, sistem çok reaktif Bio sitelerinde, polimerizasyon derecesine tarafından kontrol edilebilir olan faydaları. Ayrıca, biz gösterdi ki Bio birimleri ile amino-PEG, kısmi ikame tarafından yüzey hydrophilicity, daha fazla sistem18protein kurtarma verimliliğini artırmak ayarlanabilir. Genel olarak, aşılı poly(PFPA) silika partikülleri makul verimliliği hem de çok temiz arka plan ile geleneksel IP etkili bir alternatif gösterilmiştir.
Bu katkı antikor immobilizasyon ve IP uygulama için poly(PFPA) aşılı yüzey hazırlamak için alternatif bir yöntem rapor. Basit bir işlemdir Şekil 1' de gösterildiği gibi bir APTES bağlayıcı molekül ilk silis yüzey yatırılır, sonra poly(PFPA) polimer kovalent Bio birimler arasında tepki ile bağlayıcı molekül üzerinde bağlı olduğu Polimer ve APTES Amin işlevleri. Bu hazırlama yöntemi poly(PFPA) bir substrat yüzeye kalıcı polietilenin izin veren ancak SI-CTA sentezi ve SI-Sal polimerizasyon poly(PFPA) fırça ile ilgili birçok komplikasyonları önler. Amino-PEG Bio birimleriyle kısmi ikame hala, polimer fırça yüzey özelliklerini ince ayar sağlayan gerçekleştirilebilir. Biz böylece hazırlanan aşılı poly(PFPA) silika boncuk ile antikorlar immobilize ve protein zenginleştirme IP üzerinden için kullanılan gösterir. Detaylı boncuk hazırlık prosedürü, antikor immobilizasyon ve IP test bu makalede belgelenen, okuyucular arayışında baktılar için geleneksel Protein A/G alternatif IP tabanlı.
Access restricted. Please log in or start a trial to view this content.
1. Poly(PFPA) Homopolymer hazırlanması
2. Poly(PFPA) hazırlanması SiO2 boncuk Functionalized
3. hazırlık SiO2 boncuk PEG yerine Poly(PFPA) ile aşılı.
4. antikor immobilizasyon Poly(PFPA) üzerinde SiO2 boncuk aşılı
Not: Aynı yordam poly(PFPA) üzerinde yüzde PEG ikame bağımsız olarak kullanılır. Fosfat tamponlu tuz (PBS) TDW PBS tablet çözülerek hazırlayın. %0,1 (v/v) fosfat tamponlu tuz ile ara-20 (PBST) PBS için 1/1000 ara-20 ekleyerek hazırlayın.
5. hücre lizis ve Immunoprecipitation
Access restricted. Please log in or start a trial to view this content.
Poly(PFPA) hazırlanması için bir şema ile SiO2 boncuklar, aşılı veya PEG ikame Şekil 1' de gösterilen. Poly(PFPA) işlemi, çıplak SiO2 boncuklar, aşılama ve APTES izlemek için APTES SiO2 boncuk functionalized ve poly(PFPA) aşılı SiO2 boncuk DLS (Şekil 2) ve XPS (Şekil 3) ile karakterizedir. IP verimliliği boncuk Western blot tarafından ...
Access restricted. Please log in or start a trial to view this content.
Poly(PFPA) sentezi SiO2 boncuk Şekil 1' de gösterildiği aşılı. APTES bir bağlayıcı molekül istihdam ederek, kovalent SiO2 substrat için aşılı poly(PFPA) fırçalar basit bir işlemdir yolu ile hazırlanabilir. Her ne kadar bazı Bio birimlerinin APTES ile reaksiyonu için feda, Bio birimleri çok sayıda amino-PEG veya antikorlar ile daha sonra tepki için kullanılabilir kalması beklenir. Bio grupları poly(PFPA) fırçalar değil solvate su
Access restricted. Please log in or start a trial to view this content.
Yazarlar ifşa gerek yok.
Bu eser için savunma geliştirme (Grant No ajansı tarafından desteklenmiştir UD170039ID).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
2,2-Azobisisobutyronitrile, 99% | Daejung Chemicals | 1102-4405 | |
Methyl alcohol for HPLC, 99.9% | Duksan Pure Chemicals | d62 | |
Phenylmagnesium bromide solution 1.0 M in THF | Sigma-Aldrich | 331376 | |
Carbon disulfide anhydrous, ≥99% | Sigma-Aldrich | 335266 | |
Benzyl bromide, 98% | Sigma-Aldrich | B17905 | |
Petroleum ether, 90% | Samchun Chemicals | P0220 | |
Ethyl ether, 99% | Daejung Chemicals | 4025-4404 | |
Magnesium sulfate anhydrous, powder, 99% | Daejung Chemicals | 5514-4405 | |
Pentafluorophenyl acrylate | Santa Cruz Biotechnology | sc-264001 | contains inhibitor |
Aluminium oxide, activated, basic, Brockmann I | Sigma-Aldrich | 199443 | |
Sodium Chloride (NaCl) | Daejung Chemicals | 7548-4400 | |
Anisole anhydrous, 99.7% | Sigma-Aldrich | 296295 | |
Silica nanoparticle | Microparticles GmbH | SiO2-R-0.7 | 5% w/v aqueous suspension |
3-Aminopropyltrimethoxysilane, >96.0% | Tokyo Chemical Industry | T1255 | |
Dimethyl sulfoxide for HPLC, ≥99.7% | Sigma-Aldrich | 34869 | |
Amino-terminated poly(ethylene glycol) methyl ether | Polymer Source | P16082-EGOCH3NH2 | |
Phosphate buffered saline tablet | Takara | T9181 | |
Tween-20 | Calbiochem | 9480 | |
Tris-HCl (pH 8.0) | Invitrogen | AM9855G | |
KCl | Invitrogen | AM9640G | |
NP-40 | VWR | E109-50ML | |
Glycerol | Invitrogen | 15514-011 | |
Dithiothreitol | Biosesang | D1037 | |
Protease inhibitor | Merck | 535140-1MLCN | |
Bromo phenol blue | Sigma-Aldrich | B5525-5G | |
Tris-HCl (pH 6.8) | Biosolution | BT033 | |
Sodium dodecyl sulfate | Biosolution | BS003 | |
2-Mercaptoethanol | Gibco | 21985-023 | |
PKR Antibody | Cell Signaling Technology | 12297S | |
GAPDH Antibody | Santa Cruz Biotechnology | sc-32233 | |
Normal Rabbit IgG | Cell Signaling Technology | 2729S | |
HeLa | Korea Cell Line Bank | 10002 | |
Sonicator | DAIHAN Scientific | WUC-D10H | |
Ultrasonicator | BMBio | BR2006A | |
Centrifuge I | Eppendorf | 5424 R | |
Centrifuge II | LABOGENE | 1736R | |
Rotator | FINEPCR | ROTATOR/AG | |
Vacuum oven | DAIHAN Scientific | ThermoStable OV-30 | |
Gel permeation chromatography (THF) | Agilent Technologies | 1260 Infinity II | |
X-ray photoelectron spectrometer | Thermo VG Scientific | Sigma Probe | |
Dynamic light scattering | Malvern Instruments | ZEN 3690 |
Access restricted. Please log in or start a trial to view this content.
An erratum was issued for: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. Throughout the article, the term "3-aminopropyltriethoxysilane" has been replaced with "3-aminopropyltrimethoxysilane", and "APTES" with "APTMS".
The Keywords were updated from:
Poly(pentafluorophenyl acrylate), 3-aminopropyltriethoxysilane, reactive polymer brush, post-polymerization functionalization, antibody immobilization, immunoprecipitation
to:
Poly(pentafluorophenyl acrylate), 3-aminopropyltrimethoxysilane, reactive polymer brush, post-polymerization functionalization, antibody immobilization, immunoprecipitation
The Abstract was updated from:
We demonstrate a simple method to prepare poly(pentafluorophenyl acrylate) (poly(PFPA)) grafted silica beads for antibody immobilization and subsequent immunoprecipitation (IP) application. The poly(PFPA) grafted surface is prepared via a simple two-step process. In the first step, 3-aminopropyltriethoxysilane (APTES) is deposited as a linker molecule onto the silica surface. In the second step, poly(PFPA) homopolymer, synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization, is grafted to the linker molecule through the exchange reaction between the pentafluorophenyl (PFP) units on the polymer and the amine groups on APTES. The deposition of APTES and poly(PFPA) on the silica particles are confirmed by X-ray photoelectron spectroscopy (XPS), as well as monitored by the particle size change measured via dynamic light scattering (DLS). To improve the surface hydrophilicity of the beads, partial substitution of poly(PFPA) with amine-functionalized poly(ethylene glycol) (amino-PEG) is also performed. The PEG-substituted poly(PFPA) grafted silica beads are then immobilized with antibodies for IP application. For demonstration, an antibody against protein kinase RNA-activated (PKR) is employed, and IP efficiency is determined by Western blotting. The analysis results show that the antibody immobilized beads can indeed be used to enrich PKR while non-specific protein interactions are minimal.
to:
We demonstrate a simple method to prepare poly(pentafluorophenyl acrylate) (poly(PFPA)) grafted silica beads for antibody immobilization and subsequent immunoprecipitation (IP) application. The poly(PFPA) grafted surface is prepared via a simple two-step process. In the first step, 3-aminopropyltrimethoxysilane (APTMS) is deposited as a linker molecule onto the silica surface. In the second step, poly(PFPA) homopolymer, synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization, is grafted to the linker molecule through the exchange reaction between the pentafluorophenyl (PFP) units on the polymer and the amine groups on APTMS. The deposition of APTMS and poly(PFPA) on the silica particles are confirmed by X-ray photoelectron spectroscopy (XPS), as well as monitored by the particle size change measured via dynamic light scattering (DLS). To improve the surface hydrophilicity of the beads, partial substitution of poly(PFPA) with amine-functionalized poly(ethylene glycol) (amino-PEG) is also performed. The PEG-substituted poly(PFPA) grafted silica beads are then immobilized with antibodies for IP application. For demonstration, an antibody against protein kinase RNA-activated (PKR) is employed, and IP efficiency is determined by Western blotting. The analysis results show that the antibody immobilized beads can indeed be used to enrich PKR while non-specific protein interactions are minimal.
The fourth paragraph of the Introduction was updated from:
In this contribution, we report an alternative method to prepare poly(PFPA) grafted surface for antibody immobilization and IP application. In a simple two-step process, as illustrated in Figure 1, an APTES linker molecule is first deposited onto the silica surface, then the poly(PFPA) polymer is covalently attached to the linker molecule through the reaction between the PFP units on the polymer and the amine functions on APTES. This preparation method allows for the permanent crosslinking of poly(PFPA) to a substrate surface, but avoids the many complications associated with SI-CTA synthesis and SI-RAFT polymerization of poly(PFPA) brushes. Partial substitution of the PFP units with amino-PEG can still be performed, allowing fine-tuning of the polymer brush surface properties. We show the poly(PFPA) grafted silica beads thus prepared can be immobilized with antibodies and used for protein enrichment via IP. The detailed bead preparation procedure, antibody immobilization, and IP testing are documented in this article, for readers interested in seeking an alternative to conventional Protein A/G based IP.
to:
In this contribution, we report an alternative method to prepare poly(PFPA) grafted surface for antibody immobilization and IP application. In a simple two-step process, as illustrated in Figure 1, an APTMS linker molecule is first deposited onto the silica surface, then the poly(PFPA) polymer is covalently attached to the linker molecule through the reaction between the PFP units on the polymer and the amine functions on APTMS. This preparation method allows for the permanent crosslinking of poly(PFPA) to a substrate surface, but avoids the many complications associated with SI-CTA synthesis and SI-RAFT polymerization of poly(PFPA) brushes. Partial substitution of the PFP units with amino-PEG can still be performed, allowing fine-tuning of the polymer brush surface properties. We show the poly(PFPA) grafted silica beads thus prepared can be immobilized with antibodies and used for protein enrichment via IP. The detailed bead preparation procedure, antibody immobilization, and IP testing are documented in this article, for readers interested in seeking an alternative to conventional Protein A/G based IP.
Step 2.1 of the Protocol was updated from:
Treatment of SiO2 beads with APTES
to:
Treatment of SiO2 beads with APTMS
Step 2.1.1 of the Protocol was updated from:
SiO2 particles are available in the form of a 5% (w/v) aqueous suspension. Combine 0.8 mL of SiO2 suspension with 40 mg of APTES and 8 mL of methanol in a 20 mL scintillation vial equipped with a stir bar.
to:
SiO2 particles are available in the form of a 5% (w/v) aqueous suspension. Combine 0.8 mL of SiO2 suspension with 40 mg of APTMS and 8 mL of methanol in a 20 mL scintillation vial equipped with a stir bar.
Step 2.1.3 of the Protocol was updated from:
Transfer the solution to a conical tube. To isolate the APTES functionalized SiO2 beads, centrifuge the solution at 10,000 x g for 5 min, then remove the supernatant. Wash the beads by re-dispersing them in 3 mL of fresh methanol. Shake the tube by hand for mixing, but if necessary, improve the dispersion by sonication in a water bath for a few seconds. Centrifuge the beads at 10,000 x g for 5 min. Remove the supernatant and repeat the wash step one more time.
to:
Transfer the solution to a conical tube. To isolate the APTMS functionalized SiO2 beads, centrifuge the solution at 10,000 x g for 5 min, then remove the supernatant. Wash the beads by re-dispersing them in 3 mL of fresh methanol. Shake the tube by hand for mixing, but if necessary, improve the dispersion by sonication in a water bath for a few seconds. Centrifuge the beads at 10,000 x g for 5 min. Remove the supernatant and repeat the wash step one more time.
Step 2.1.4 of the Protocol was updated from:
Combine the methanol washed SiO2 beads with 3 mL of dimethyl sulfoxide (DMSO). Shake the mixture by hand, or if necessary sonicate for a few seconds, until the beads are fully dispersed in DMSO. Centrifuge the beads at 10,000 x g for 5 min, then remove the supernatant. Repeat the step to ensure complete solvent exchange from methanol to DMSO.to:
Combine the methanol washed SiO2 beads with 3 mL of dimethyl sulfoxide (DMSO). Shake the mixture by hand, or if necessary sonicate for a few seconds, until the beads are fully dispersed in DMSO. Centrifuge the beads at 10,000 x g for 5 min, then remove the supernatant. Repeat the step to ensure complete solvent exchange from methanol to DMSO.
NOTE: The final suspension contains the APTMS functionalized SiO2 beads dispersed in 4 mL of DMSO.
Step 2.2 of the Protocol was updated from:
Grafting poly(PFPA) to APTES functionalized SiO2 beads
to:
Grafting poly(PFPA) to APTMS functionalized SiO2 beads
Step 2.2.2 of the Protocol was updated from:
Add 1 mL of APTES functionalized SiO2 beads suspended in DMSO (from Step 2.1.4) to the poly(PFPA) solution. React at RT for 1 h with vigorous stirring.
to:
Add 1 mL of APTMS functionalized SiO2 beads suspended in DMSO (from Step 2.1.4) to the poly(PFPA) solution. React at RT for 1 h with vigorous stirring.
Step 3.4 of the Protocol was updated from:
To prepare APTES functionalized SiO2 beads suspended in DMSO, follow the same steps shown in Step 2.1. Transfer 1 mL of the bead suspension into the PEG-substituted poly(PFPA) solution prepared in Step 3.3. Allow the grafting between poly(PFPA) and APTES functionalized SiO2 beads to proceed at RT for 1 h with vigorous stirring.
to:
To prepare APTMS functionalized SiO2 beads suspended in DMSO, follow the same steps shown in Step 2.1. Transfer 1 mL of the bead suspension into the PEG-substituted poly(PFPA) solution prepared in Step 3.3. Allow the grafting between poly(PFPA) and APTMS functionalized SiO2 beads to proceed at RT for 1 h with vigorous stirring.
The first paragraph of the Representative Results was updated from:
A schematic for the preparation of poly(PFPA) grafted SiO2 beads, with or without PEG substitution is shown in Figure 1. To monitor the APTES and poly(PFPA) grafting process, bare SiO2 beads, APTES functionalized SiO2 beads, and poly(PFPA) grafted SiO2 beads are characterized by both DLS (Figure 2) and XPS (Figure 3). IP efficiencies of the beads are determined by Western blotting. Figure 4 shows the Western blotting results for IP using 1% PEG-substituted poly(PFPA) grafted beads, where the beads are incubated with no antibody, a non-specific antibody, or anti-PKR antibody. Figure 5 shows the Western blotting results for IP using 0% PEG-substituted poly(PFPA) grafted beads and 1% PEG-substituted poly(PFPA) grafted beads, both incubated with anti-PKR antibodies.
to:
A schematic for the preparation of poly(PFPA) grafted SiO2 beads, with or without PEG substitution is shown in Figure 1. To monitor the APTMS and poly(PFPA) grafting process, bare SiO2 beads, APTMS functionalized SiO2 beads, and poly(PFPA) grafted SiO2 beads are characterized by both DLS (Figure 2) and XPS (Figure 3). IP efficiencies of the beads are determined by Western blotting. Figure 4 shows the Western blotting results for IP using 1% PEG-substituted poly(PFPA) grafted beads, where the beads are incubated with no antibody, a non-specific antibody, or anti-PKR antibody. Figure 5 shows the Western blotting results for IP using 0% PEG-substituted poly(PFPA) grafted beads and 1% PEG-substituted poly(PFPA) grafted beads, both incubated with anti-PKR antibodies.
Figure 1 was updated from:
Figure 1: Schematic for the preparation of poly(PFPA) grafted SiO2 beads using APTES as a linker molecule. (a) Poly(PFPA) grafted beads. (b) Partially PEG-substituted poly(PFPA) grafted beads.
to:
Figure 1: Schematic for the preparation of poly(PFPA) grafted SiO2 beads using APTMS as a linker molecule. (a) Poly(PFPA) grafted beads. (b) Partially PEG-substituted poly(PFPA) grafted beads.
Figure 2 was updated from:
Figure 2: DLS measurements for (a) bare SiO2 beads (SiO2), (b) APTES functionalized SiO2 beads (APTES-SiO2), and (c) poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2), dispersed in DMSO. The Z-average diameter (d) and polydispersity index (PDI) of each sample are reported.
to:
Figure 2: DLS measurements for (a) bare SiO2 beads (SiO2), (b) APTMS functionalized SiO2 beads (APTMS-SiO2), and (c) poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2), dispersed in DMSO. The Z-average diameter (d) and polydispersity index (PDI) of each sample are reported.
Figure 3 was updated from:
Figure 3: XPS spectra for bare SiO2 beads (SiO2), APTES functionalized SiO2 beads (APTES-SiO2), and poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2). The peaks examined correspond to (a) Si 2p, (b) O 1s, (c) N 1s, and (d) F 1s.
to:
Figure 3: XPS spectra for bare SiO2 beads (SiO2), APTMS functionalized SiO2 beads (APTMS-SiO2), and poly(PFPA) grafted SiO2 beads (poly(PFPA)-SiO2). The peaks examined correspond to (a) Si 2p, (b) O 1s, (c) N 1s, and (d) F 1s.
The first and second paragraphs of the Discussion were updated from:
The synthesis of poly(PFPA) grafted SiO2 beads is illustrated in Figure 1. By employing APTES as a linker molecule, poly(PFPA) brushes covalently grafted to SiO2 substrate can be prepared via a simple two-step process. Although some of the PFP units are sacrificed for the reaction with APTES, a large number of the PFP units are expected to remain available for later reaction with either amino-PEG or antibodies. The PFP groups are known to form low energy surfaces so poly(PFPA) brushes do not solvate well in water28. For IP application, the antibodies need to be immobilized on the poly(PFPA) brushes, and this exchange reaction is done in aqueous buffer solution in order to preserve the activity of the antibodies. As reported in our previous publication, partial substitution of the PFP units with hydrophilic molecules such as amine-functionalized PEG can improve surface hydrophilicity, leading to increased antibody immobilization efficiency18. In this study, partially PEG substituted poly(PFPA) is also prepared, then grafted to the SiO2 surface using the same APTES linker molecule. Overall, the methods illustrated in Figure 1 allow the preparation of poly(PFPA) grafted surfaces with different degrees of PEG substitution. These polymer brushes with tunable surface properties provide an ideal platform for antibody immobilization and subsequent IP application.
The bead preparation process is monitored by both DLS and XPS. The DLS results for various functionalized SiO2 beads in DMSO are summarized in Figure 2. The bare SiO2 beads exhibit hydrodynamic diameter of 666 nm, in agreement with the manufacturer reported bead size (0.676 μm; SD = 0.03 μm). After APTES treatment, the bead diameter increases to 740 nm; and with poly(PFPA) treatment, the bead diameter further increases to 1889 nm. It is important to point out that the polydispersity index (PDI) for the poly(PFPA) grafted beads is rather large (PDI = 0.76), which is indicative of poor quality sample containing large aggregates. Although the DLS curve only shows one nano-sized peak, small amount of aggregates may be present in the suspension. The functionalized SiO2 beads are also examined by XPS to determine surface composition (Figure 3). Following APTES treatment, N 1s peak associated with the amine groups on APTES is detected. And, following poly(PFPA) treatment, F 1s peak associated with the PFP units on the polymer is detected. Together these data show the successful functionalization of the SiO2 surface, first with APTES, then with poly(PFPA).
to:
The synthesis of poly(PFPA) grafted SiO2 beads is illustrated in Figure 1. By employing APTMS as a linker molecule, poly(PFPA) brushes covalently grafted to SiO2 substrate can be prepared via a simple two-step process. Although some of the PFP units are sacrificed for the reaction with APTMS, a large number of the PFP units are expected to remain available for later reaction with either amino-PEG or antibodies. The PFP groups are known to form low energy surfaces so poly(PFPA) brushes do not solvate well in water28. For IP application, the antibodies need to be immobilized on the poly(PFPA) brushes, and this exchange reaction is done in aqueous buffer solution in order to preserve the activity of the antibodies. As reported in our previous publication, partial substitution of the PFP units with hydrophilic molecules such as amine-functionalized PEG can improve surface hydrophilicity, leading to increased antibody immobilization efficiency18. In this study, partially PEG substituted poly(PFPA) is also prepared, then grafted to the SiO2 surface using the same APTMS linker molecule. Overall, the methods illustrated in Figure 1 allow the preparation of poly(PFPA) grafted surfaces with different degrees of PEG substitution. These polymer brushes with tunable surface properties provide an ideal platform for antibody immobilization and subsequent IP application.
The bead preparation process is monitored by both DLS and XPS. The DLS results for various functionalized SiO2 beads in DMSO are summarized in Figure 2. The bare SiO2 beads exhibit hydrodynamic diameter of 666 nm, in agreement with the manufacturer reported bead size (0.676 μm; SD = 0.03 μm). After APTMS treatment, the bead diameter increases to 740 nm; and with poly(PFPA) treatment, the bead diameter further increases to 1889 nm. It is important to point out that the polydispersity index (PDI) for the poly(PFPA) grafted beads is rather large (PDI = 0.76), which is indicative of poor quality sample containing large aggregates. Although the DLS curve only shows one nano-sized peak, small amount of aggregates may be present in the suspension. The functionalized SiO2 beads are also examined by XPS to determine surface composition (Figure 3). Following APTMS treatment, N 1s peak associated with the amine groups on APTMS is detected. And, following poly(PFPA) treatment, F 1s peak associated with the PFP units on the polymer is detected. Together these data show the successful functionalization of the SiO2 surface, first with APTMS, then with poly(PFPA).
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır