需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Here we present a community accepted protocol in multimedia format for subretinally injecting a bolus of RPE cells in rats and mice. This approach can be used for determining rescue potentials, safety profiles, and survival capacities of grafted RPE cells upon implantation in animal models of retinal degeneration.
光转换成电脉冲发生在外层视网膜和在很大程度上是由杆和视锥感光细胞和视网膜色素上皮细胞(RPE)细胞中来实现的。 RPE提供感光细胞和死亡或视网膜色素上皮细胞的功能障碍是年龄相关性黄斑变性(AMD),永久性视力丧失的人55岁及以上的主要原因特性关键支持。而没有治疗AMD的已被确定的,健康的RPE在患病眼中植入可能被证明是一种有效的治疗,以及大量的RPE细胞可以从多能干细胞可以容易地产生。几个关于RPE细胞递送的安全性和有效性有趣的问题仍然可以检查在动物模型中,与用于注入的RPE广为接受的协议已被开发出来。此处所描述的技术中的各种研究已经使用由多个组,并且包括首先创建在眼的孔用锋利的针头。然后用注射器BLUnt的针装有细胞通过孔插入并通过玻璃体,直到它轻轻地接触到视网膜色素上皮。采用这种注射方法,该方法相对简单,并且需要最小的设备,我们实现干细胞衍生的视网膜色素上皮细胞的一致和有效的整合在宿主的RPE防止在动物模型显著量光感受器变性的之间。而实际的协议不一部分,我们还描述了如何确定诱发的注射,以及如何验证的细胞注射入使用体内成像方式视网膜下腔的创伤的程度。最后,使用该协议的应用不限于视网膜色素上皮细胞;它可以用于任何化合物或细胞进入视网膜下的空间注入。
The sensory retina is organized in functional tiers of neurons, glia, and endothelial cells. Photoreceptors at the back of the retina are activated by light; through phototransduction they convert photons into electrical signals that are refined by interneurons and transmitted to the visual cortex in the brain. Phototransduction cannot occur without the coordinated efforts of Mueller glia and retinal pigment epithelium (RPE) cells. RPE are organized in a monolayer directly behind the photoreceptors and perform multiple and diverse functions integral to photoreceptor function and homeostasis. In fact, RPE and photoreceptors are so co-dependent that they are considered to be one functional unit. Death or dysfunction of RPE results in devastating secondary effects on photoreceptors and is associated with age-related macular degeneration (AMD), the leading cause of blindness in the elderly1,2.
While no cure has been discovered for AMD, several clinical studies have shown that RPE cell replacement may be a promising therapeutic option3-13. With the advent of stem cell technology, it is now possible to generate large numbers of RPE cells in vitro from embryonic and induced pluripotent stem cells (hES and hiPS) that strongly resemble their somatic counterparts functionally and anatomically14-26. Stem cell-derived RPE have also been shown to function in vivo by multiple independent groups, including our own, to significantly slow retinal degeneration in rat and mouse lines with spontaneous retinal degeneration16,18,21,22,25,28,29. This combination of clinical and preclinical supporting evidence is so compelling that several clinical trials to prevent retinal degeneration using stem cell-derived RPE cells are now ongoing30,31.
RPE can be readily derived from hES and/or hiPS and implanted in the subretinal space of rodents using various derivation and injection techniques32,33. (See Westenskow et al. for a methods paper in multimedia format demonstrating the directed differentiation protocol we employ)34. There are critical remaining questions regarding the safety, survival, and functional capacity of exogenously delivered RPE cells upon implantation, therefore the ability to perform subretinal injections in rodents is a critical skill16,18,21,29,36,37. The delivery of RPE is not trivial, and the field is divided on the most effective injection technique. The protocol we describe here is a simple and effective way to deliver of bolus of RPE cells subretinally, and was used in the first clinical trial for stem cell-derived RPE transplantation31. (The reader may also refer to another JoVE article by Eberle et al. for an alternative depiction of subretinal injections in rodents.38)
The technique outlined in this manuscript cannot be visualized and trauma is unavoidable (as with any subretinal injection technique). It is performed by making a hole just under the limbus vessels and inserting a blunt needle along a transscleral route to inject a bolus of cells under the diametrically opposed retina. The person doing the injection will feel resistance as the blunt needle touches the retina. The cells may be directly visualized after the injection, however, and the degree of the induced retinal detachment can be determined by labeling the RPE cells with a transient fluorescent marker and detecting them with a confocal scanning ophthalmoscope (cSLO). An optical coherence tomography (OCT) system can also be used to monitor the trauma and easily identify the injection site.
注:所有动物均按照由斯克里普斯研究所成立了道德准则处理。
1.准备材料,为注射(约20分钟)
2.制备的视网膜色素上皮细胞的注射(〜30分钟至1小时)
3.子视网膜注射(〜每次注射5分钟)
注意:如果可能的话,学习技术有成年白鼠自角膜缘船只更容易形象化。当学习更容易促进注射部位的可视化(试图注入细胞前)注入坚牢绿溶液。
我们可以提供RPE细胞的悬浮液进入啮齿动物的视网膜下腔迅速,稳定地使用本手稿中描述的技术。虽然不是必需的,创伤可以大大使用具有图1A和B中的显微所示的设置最小化。持啮齿类如图1C临时突眼。的步骤是相同的,如果与微操作或由手执行;这些描绘在图1D卡通。当从标记为视网膜色素上皮细胞中进行干净荧光可以利用CSLO和诱导视网膜脱离可使用OCT?...
在这篇文章中,我们描述了在大鼠和小鼠进行RPE细胞的视网膜下注射悬浮一个比较简单的方法。该协议是简单易学和更多的经验与技术将在较少创伤平移( 图3;这代表了更好注射1),特别是如果一个微操作时( 图1A)。任何创伤可以在体内与CSLO和OCT系统( 图2),如果可用来监测。如果更高的分辨率和更低噪声图像被需要,是本领域的成像平台的状态...
None of the authors have any commercial disclosures to declare.
We wish to thank Alison Dorsey for helping to develop the subretinal injection technique. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.
Name | Company | Catalog Number | Comments |
2-Mercaptoethanol (55 mM) | Gibco | 21985-023 | 50 ml x 1 |
Cell Scapers | VWR | 89260-222 | Case x 1 |
CellTracker Green CMFDA | Molecular Probes | C34552 | 50 µg x 20 |
DPBS, no calcium, no magnesium | Gibco | 14190-144 | 500 ml x 1 |
Fast Green | Sigma-Aldrich | F7258 | 25 g x 1 |
Genteal Geldrops Moderate to Severe Lubricant Eye Drops | Walmart | 4060941 | 25 ml x 1 |
Hamilton Model 62 RN SYR | Hamilton | 87942 | Syringe x 1 |
Hamilton Needle 33 G, 0.5", point 3 (304 stainless steel) | Hamilton | 7803-05 | Needles x 6 |
Knockout DMEM | Gibco | 10829-018 | 500 ml x 1 |
KnockOut Serum Replacement | Gibco | 10828-028 | 500 ml x 1 |
L-Glutamine 200 mM | Gibco | 25030-081 | 100 ml x 1 |
Magnetic Stand | Leica Biosystems | 39430216 | Stand x 1 |
MEM Non-Essential Amino Acids Solution 100X | Gibco | 11140-050 | 100 ml x 1 |
Micromanipulator | Leica Biosystems | 3943001 | Manipulator x 1 |
Penicillin-Streptomycin (10,000 U/ml) | Gibco | 15140-122 | 100 ml x 1 |
Slip Tip Syringes without Needles BD (3 ml) | VWR | BD309656 | Pack x 1 |
Specialty-Use Needles BD (30 G, 1") | VWR | BD305128 | Box x 1 |
TrypLE Express Enzyme (1X), no phenol red | Gibco | 12604013 | 100 ml x 1 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。