JoVE Logo

Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Here we present a community accepted protocol in multimedia format for subretinally injecting a bolus of RPE cells in rats and mice. This approach can be used for determining rescue potentials, safety profiles, and survival capacities of grafted RPE cells upon implantation in animal models of retinal degeneration.

Zusammenfassung

Die Umwandlung von Licht in elektrische Impulse erfolgt in der äußeren Netzhaut und wird weitgehend von Stäbchen und Zapfen-Photorezeptoren und retinalen Pigmentepithel (RPE) Zellen durchgeführt. RPE liefern wichtige Unterstützung für Photorezeptoren und den Tod oder Dysfunktion der RPE-Zellen ist charakteristisch für die altersbedingte Makuladegeneration (AMD), die häufigste Ursache für dauerhafte Sehverlust bei Menschen im Alter von 55 und älter. Während keine Heilung für AMD identifiziert worden ist, kann die Implantation von gesunden RPE in erkrankten Augen sich als eine wirksame Behandlung sein, und eine große Zahl von RPE-Zellen können leicht aus pluripotenten Stammzellen erzeugt werden. Einige interessante Fragen hinsichtlich der Sicherheit und Wirksamkeit von RPE-Zell Lieferung noch in Tiermodellen untersucht werden, und gut anerkannten Protokollen zur RPE injizieren entwickelt. Die hier beschriebene Technik ist von mehreren Gruppen in verschiedenen Studien verwendet und beinhaltet zunächst ein Loch in das Auge mit einer spitzen Nadel schaffen. Dann wird eine Spritze mit einer Blunt Nadel mit Zellen beladen ist, durch das Loch eingeführt und geleitet durch den Glas bis es leicht berührt RPE. Mit dieser Einspritzverfahren, das relativ einfach und erfordert minimale Ausrüstung wir konsistente und effiziente Integration von Stammzellen abgeleiteten RPE Zellen zu erreichen zwischen dem Host RPE, die signifikante Menge an Photorezeptordegeneration verhindert in Tiermodellen. Obwohl nicht Teil der tatsächlichen Protokoll beschreiben wir auch, wie das Ausmaß des Traumas durch die Injektion und zum Überprüfen, ob die Zellen in den subretinalen Raum unter Verwendung von in vivo-Bildgebungsverfahren injiziert induziert wird. Schließlich wird die Verwendung dieses Protokoll nicht RPE Zellen begrenzt; es kann verwendet werden, um jede Verbindung oder Zelle in den subretinalen Raum zu injizieren.

Einleitung

The sensory retina is organized in functional tiers of neurons, glia, and endothelial cells. Photoreceptors at the back of the retina are activated by light; through phototransduction they convert photons into electrical signals that are refined by interneurons and transmitted to the visual cortex in the brain. Phototransduction cannot occur without the coordinated efforts of Mueller glia and retinal pigment epithelium (RPE) cells. RPE are organized in a monolayer directly behind the photoreceptors and perform multiple and diverse functions integral to photoreceptor function and homeostasis. In fact, RPE and photoreceptors are so co-dependent that they are considered to be one functional unit. Death or dysfunction of RPE results in devastating secondary effects on photoreceptors and is associated with age-related macular degeneration (AMD), the leading cause of blindness in the elderly1,2.

While no cure has been discovered for AMD, several clinical studies have shown that RPE cell replacement may be a promising therapeutic option3-13. With the advent of stem cell technology, it is now possible to generate large numbers of RPE cells in vitro from embryonic and induced pluripotent stem cells (hES and hiPS) that strongly resemble their somatic counterparts functionally and anatomically14-26. Stem cell-derived RPE have also been shown to function in vivo by multiple independent groups, including our own, to significantly slow retinal degeneration in rat and mouse lines with spontaneous retinal degeneration16,18,21,22,25,28,29. This combination of clinical and preclinical supporting evidence is so compelling that several clinical trials to prevent retinal degeneration using stem cell-derived RPE cells are now ongoing30,31.

RPE can be readily derived from hES and/or hiPS and implanted in the subretinal space of rodents using various derivation and injection techniques32,33. (See Westenskow et al. for a methods paper in multimedia format demonstrating the directed differentiation protocol we employ)34. There are critical remaining questions regarding the safety, survival, and functional capacity of exogenously delivered RPE cells upon implantation, therefore the ability to perform subretinal injections in rodents is a critical skill16,18,21,29,36,37. The delivery of RPE is not trivial, and the field is divided on the most effective injection technique. The protocol we describe here is a simple and effective way to deliver of bolus of RPE cells subretinally, and was used in the first clinical trial for stem cell-derived RPE transplantation31. (The reader may also refer to another JoVE article by Eberle et al. for an alternative depiction of subretinal injections in rodents.38)

The technique outlined in this manuscript cannot be visualized and trauma is unavoidable (as with any subretinal injection technique). It is performed by making a hole just under the limbus vessels and inserting a blunt needle along a transscleral route to inject a bolus of cells under the diametrically opposed retina. The person doing the injection will feel resistance as the blunt needle touches the retina. The cells may be directly visualized after the injection, however, and the degree of the induced retinal detachment can be determined by labeling the RPE cells with a transient fluorescent marker and detecting them with a confocal scanning ophthalmoscope (cSLO). An optical coherence tomography (OCT) system can also be used to monitor the trauma and easily identify the injection site.

Protokoll

HINWEIS: Alle Tiere wurden in Übereinstimmung mit den ethischen Richtlinien des Scripps Research Institute gegründet behandelt.

1. Vorbereitung der Materialien für die Injektion (~ 20 min)

  1. Vorwärmen Zelldissoziationslösung (vorzugsweise eine, die durch den Verdünnungs inaktiviert wird, nicht mit Serum), sterile PBS und Kulturmedien (Tabelle 1).
  2. Sterilisieren Sie die Spritze mit einer stumpfen Nadel durch Demontage und es Kochen Sie die Teile in Wasser 15 min.

2. Herstellung der RPE-Zellen für die Injektion (~ 30 min bis 1 h)

  1. Lösen Sie die RPE-Zellen mit vorgewärmten Zelldissoziationslösung für 5-8 Minuten bei 37 ° C.
  2. Kratzen Sie die Zellen vorsichtig zu einem noch angebracht sind freizugeben.
  3. Verdünnen Sie die Zellen mit einem großen Volumen von Kulturmedien (füllen einen 15-ml-Tube), um die Dissoziationslösung inaktivieren und gezählt.
  4. Zentrifuge bei 800 × g für 5 min, um die Zellen zu pelletieren.
  5. Die Zellen auf 200.000 Zellen / ul (100.000 Zellen in einem 0,5 ul Volumen zu liefern) in sterile vorgewärmten PBS und übertragen diese in ein 1,5 ml Mikrozentrifugenröhrchen.
  6. Fügen Sie optional einen Live Cell transienten Fluoreszenzmarker und bei 37 ° C für 30-45 min.
  7. Legen Sie die Spritze mit einer stumpfen Nadel mit 0,5 ul der Zellen. Injizieren die Zellen so schnell wie möglich.

3. Unternetzhaut Injection (~ 5 min pro Injektion)

HINWEIS: Wenn möglich, zu lernen, die Technik mit Erwachsenen Albinoratten, da die Limbus Gefäße sind viel einfacher zu visualisieren. Injizieren Fast Green-Lösung, wenn das Lernen (bevor Sie versuchen, Zellen injizieren), um die Visualisierung der Injektionsstelle leichter zu erleichtern.

  1. Anesthetize das Nagetier. Verwenden intraperitoneale Injektionen von 100 mg / ml Ketamin und 10 mg / ml Xylazin (20 & mgr; l / 10 g Körper wacht) über Isofluoran Inhalation, da es schwierig ist, das Nagetier manövrieren und zu injizieren, in dem Auge mit der Schnauze in dem Inhalator.
    1. Stellen Sie sicher, dass das Tier tief durch Kneifen einer seiner Pfoten betäubt. Wenn er zuckt zusammen, einige Minuten warten und erneut versuchen, bevor Sie den subretinalen Injektion.
  2. Positionieren Sie das Nagetier auf die Seite, so dass das Auge, das injiziert wird wird mit Blick auf die Decke.
  3. Unter einem Binokular sanft dehnen die Haut, so dass die Augen öffnet leicht nach oben aus dem Sockel (temporäre Exophthalmus) und leichter zugänglich, indem Sie den Kopf mit zwei Fingern direkt über dem Ohr und durch seinen Kiefer und sanft dehnen die Haut parallel zu den Augenlidern so dass das Auge springt leicht nach oben aus dem Sockel (siehe Abbildung 1C). Fassen Sie nicht die Nager zu nahe an der Kehle.
  4. Mit einem 30 gis Einweg vorsterilisiert Nadel, machen Sie ein Loch direkt unter dem Limbus (wenn die Gefäße betroffen sind, werden Blutungen bE signifikant und es schwierig sein, das Loch später zu finden) und in einem Winkel zu vermeiden, berühren Sie das Objektiv mit der Nadel (1D). Berühren Sie das Objektiv mit der scharfen (oder stumpf) Nadel oder unmittelbaren Kataraktbildung auftreten.
    HINWEIS: Die Injektionen besser mit zwei Personen. Auf diese Weise kann eine Person die Spritze mit der stumpfen Nadel auf die Person, die die Injektion, nachdem sie das erste Loch mit der scharfen Nadel Einweg erstellt, um den Fokus auf das zu halten, wo das Loch spielte.
  5. Fahren Sie den Einweg-spitzen Nadel aus dem Auge und gleichzeitig die Haftung auf den Kopf. Denken Sie daran, genau dort, wo das Loch ist.
  6. Nachdem sowohl die Montage des vorinstallierten Spritze mit einer stumpfen Nadel auf einem Mikromanipulator oder halten Sie es von Hand, legen Sie die Spitze der Spritze mit der stumpfen Nadel durch das Loch, kümmert sich wieder das Objektiv nicht zu berühren und drücken Sie sie vorsichtig durch das Auge sehr vorsichtig, bis das Gefühl Widerstand (1D).
  7. Keeping alle Bewegungen auf ein Minimum, sorgfältig zu injizieren die RPE-Zellen langsam in den subretinalen Raum.
    HINWEIS: RPE / Netzhautablösung induziert wird; dies unvermeidbar ist. Jedoch eine sauberere Injektion minimiert die Ablösung und die Chancen der Wiederbefestigung (1E) stark verbessert. Alle übertriebenen Bewegungen kann die Nadel wieder in die Netzhaut zu bewegen und Seitwärtsbewegungen kann die Netzhaut schädigen. Die Verwendung einer Einspritzpumpe ist optional, aber ermöglicht eine sehr präzise Lieferung.
  8. Ziehen Sie die Spritze langsam. Bewerben Auge Feuchtigkeitstropfen auf das Auge hydratisiert.
  9. Weiter, um das Tier zu überwachen, bis sie Brustlage gewinnt. Lassen Sie das Tier unbeaufsichtigt oder in einen Käfig mit anderen Alarm Tiere, bis sie Brustlage gewinnt.

Ergebnisse

Wir können eine Aussetzung der RPE-Zellen schnell und konsequent in den subretinalen Raum von Nagetieren zu liefern mit dem in dieser Handschrift beschriebenen Technik. Obwohl nicht erforderlich, können Traumata stark mit dem mit einem Mikromanipulator in 1A & B gezeigten Aufbau minimiert werden. Halten Sie den Nager wie in 1C für temporäre Exophthalmus gezeigt. Die Schritte sind die gleichen, wenn der Mikromanipulator oder von Hand durchgeführt wird; diese werden in der Karika...

Diskussion

In diesem Artikel beschreiben wir ein relativ einfaches Verfahren zum Durchführen subretinalen Injektion von RPE-Zellen in Suspension in Ratten und Mäusen. Das Protokoll ist einfach zu erlernen und mehr Erfahrung mit der Technik zu weniger Verletzungen zu übersetzen (3; dies stellt eine der besseren Injektionen), insbesondere wenn ein Mikromanipulator verwendet wird (1A). Jede Trauma kann in vivo mit einem cSLO und OCT-System (2), wenn vorhanden überwacht w...

Offenlegungen

None of the authors have any commercial disclosures to declare.

Danksagungen

We wish to thank Alison Dorsey for helping to develop the subretinal injection technique. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.

Materialien

NameCompanyCatalog NumberComments
2-Mercaptoethanol (55 mM)Gibco 21985-02350 ml x 1 
Cell ScapersVWR89260-222Case x 1
CellTracker Green CMFDAMolecular ProbesC3455250 µg x 20
DPBS, no calcium, no magnesiumGibco14190-144500 ml x 1 
Fast GreenSigma-AldrichF725825 g x 1 
Genteal Geldrops Moderate to Severe Lubricant Eye Drops Walmart406094125 ml x 1
Hamilton Model 62 RN SYRHamilton87942Syringe x 1 
Hamilton Needle 33 G, 0.5", point 3 (304 stainless steel)Hamilton7803-05Needles x 6
Knockout DMEMGibco10829-018500 ml x 1 
KnockOut Serum ReplacementGibco10828-028500 ml x 1 
L-Glutamine 200 mMGibco25030-081100 ml x 1
Magnetic StandLeica Biosystems39430216Stand x 1
MEM Non-Essential Amino Acids Solution 100X Gibco11140-050100 ml x 1
MicromanipulatorLeica Biosystems3943001Manipulator x 1
Penicillin-Streptomycin (10,000 U/ml)Gibco15140-122100 ml x 1
Slip Tip Syringes without Needles BD  (3 ml)  VWRBD309656Pack x 1
Specialty-Use Needles BD  (30 G, 1")VWRBD305128Box x 1
TrypLE Express Enzyme (1X), no phenol redGibco12604013100 ml x 1

Referenzen

  1. Bird, A. C. Therapeutic targets in age-related macular disease. The Journal of Clinical Investigation. 120 (9), 3033-3041 (2010).
  2. Jong, P. T., Med, N. .. . E. n. g. l. .. . J. .. . Age-related macular degeneration. 355 (14), 1474-1485 (2006).
  3. Abe, T. Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration: short-term results. The Tohoku Journal Of Experimental Medicine. 191 (1), 7-20 (2000).
  4. Algvere, P. V., Berglin, L., Gouras, P., Sheng, Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 232, 707-716 (1994).
  5. Binder, S. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest. Ophthalmol. Vis. Sci. 45 (11), 4151-4160 (2004).
  6. Binder, S. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am. J. Ophthalmol. 133 (2), 215-225 (2002).
  7. Juan, E., Loewenstein, A., Bressler, N. M., Alexander, J. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am. J. Ophthalmol. 125 (5), 635-646 (1998).
  8. Falkner-Radler, C. I. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. British Journal of Ophthalmology. 95 (3), 370-375 (2011).
  9. Joussen, A. M. How complete is successful 'Autologous retinal pigment epithelium and choriod translocation in patients with exsudative age-related macular degeneration: a short-term follow-up' by Jan van Meurs and P.R. van Biesen. Graefes. Arch. Clin. Exp. Ophthalmol. 241 (12), 966-967 (2003).
  10. Lai, J. C. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch. Ophthalmol. 120 (10), 1317-1324 (2002).
  11. Machemer, R., Steinhorst, U. H. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes. Arch. Clin. Exp. Ophthalmol. 231 (11), 635-641 (1993).
  12. MacLaren, R. E. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 114 (3), 561-570 (2007).
  13. Peyman, G. A. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surgery. 22 (2), 102-108 (1991).
  14. Buchholz, D. E. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 27 (10), 2427-2434 (2009).
  15. Carr, A. J. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 15 (4), 283-295 (2009).
  16. Carr, A. J. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 4 (12), e8152 (2009).
  17. Hirami, Y. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 458 (3), 126-131 (2009).
  18. Idelson, M. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 5 (4), 396-408 (2009).
  19. Klimanskaya, I. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 6 (3), 217-245 (2004).
  20. Kokkinaki, M., Sahibzada, N., Golestaneh, N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport, Membrane Potential, Polarized Vascular Endothelial Growth Factor Secretion, and Gene Expression Pattern Similar to Native RPE. Stem Cells. 29 (5), 825-835 (2011).
  21. Krohne, T. Generation of retinal pigment epithelial cells from small molecules and OCT4-reprogrammed human induced pluripotent stem cells. Stem Cells Translational Medicine. 1 (2), 96-109 (2012).
  22. Lund, R. D. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 8 (3), 189-199 (2006).
  23. Meyer, J. S. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences. 106 (39), 16698-16703 (2009).
  24. Osakada, F. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122 (17), 3169-3179 (2009).
  25. Vugler, A. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol. 214 (2), 347-361 (2008).
  26. Westenskow, P. D. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Invest. Ophthalmol. Vis. Sci. 53 (10), 6282-6290 (2012).
  27. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122 (10), 598-614 (2004).
  28. Li, Y., et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine. 18, 1312-1319 (2012).
  29. Wang, N. K. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa). Transplantation. 89 (8), 911-919 (2010).
  30. Ramsden, C. M. Stem cells in retinal regeneration: past, present and future. Development. 140 (12), 2576-2585 (2013).
  31. Schwartz, S. D. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet. 379 (9817), 713-720 (2012).
  32. Carr, A. J. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences. 36 (7), 385-395 (2013).
  33. Westenskow, P., Friedlander, M., Werne, J. S., Chalupa, L. M. Ch. 111. The New Visual Neurosciences. , 1611-1626 (2013).
  34. Westenskow, P., Sedillo, Z., Friedlander, M. Efficient Derivation of Retinal Pigment Epithelium Cells from iPS. J. Vis. Exp. , .
  35. Furhmann, S., Levine, E. M., Friedlander, M. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 127 (21), 4599-4609 (2000).
  36. Lu, B. Long-Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration). Stem Cells. 27 (9), 2126-2135 (2009).
  37. Zhao, T., Zhang, Z. -. N., Rong, Z., Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature. 474 (7350), 212-215 (2011).
  38. Eberle, D., Santos-Ferreira, T., Grahl, S., Ader, M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. Journal Of Visualized Experiments. , e50932 (2014).
  39. Huber, G. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 50, 5888-5895 (2009).
  40. Kim, K. H. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. Journal of Vision. 53 (8), 4644-4656 (2008).
  41. Pennesi, M. E. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53, 4644-4656 (2012).
  42. Fisher, S. K., Lewis, G. P., Linberg, K. A., Verardo, M. R. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Progress in Retinal And Eye Research. 24 (3), 395-431 (2005).
  43. Hu, Y. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Research. 48 (4), 186-191 (2012).
  44. Diniz, B. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest. Ophthalmol. Vis. Sci. 54 (7), 5087-5096 (2013).

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Medizinretinalen Pigmentepithelsubretinalen Injektionentranslationale Medizinaltersbedingte Makula Degenerationzellbasierte Liefer

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten