需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Here we present a protocol that generates large amounts of murine monocytes from heterogeneous bone marrow for translational applications. In comparison to others, this new method helps reduce the number of sacrificed animals and lowers costs by avoiding expensive methods such as high gradient magnetic cell separation (MACS).
As a subtype of leukocytes and progenitors of macrophages, monocytes are involved in many important processes of organisms and are often the subject of various fields in biomedical science. The method described below is a simple and effective way to isolate murine monocytes from heterogeneous bone marrow.
Bone marrow from the femur and tibia of Balb/c mice is harvested by flushing with phosphate buffered saline (PBS). Cell suspension is supplemented with macrophage-colony stimulating factor (M-CSF) and cultured on ultra-low attachment surfaces to avoid adhesion-triggered differentiation of monocytes. The properties and differentiation of monocytes are characterized at various intervals. Fluorescence activated cell sorting (FACS), with markers like CD11b, CD115, and F4/80, is used for phenotyping. At the end of cultivation, the suspension consists of 45%± 12% monocytes. By removing adhesive macrophages, the purity can be raised up to 86%± 6%. After the isolation, monocytes can be utilized in various ways, and one of the most effective and common methods for in vivo delivery is intravenous tail vein injection.
This technique of isolation and application is important for mouse model studies, especially in the fields of inflammation or immunology. Monocytes can also be used therapeutically in mouse disease models.
The isolation of monocytes is important and critical for many in vitro and in vivo studies. These cells are targets for diseases such as peripheral arterial disease, coronary heart disease, or other ischemic diseases, since collateral vessel growth is strongly driven by local inflammation. Inflammatory responses include endothelial activation and local recruitment of leukocytes, mainly monocytes, which then mature to macrophages and create a highly arteriogenic environment by secreting multiple growth factors to induce the remodeling of an arteriole into a functional collateral artery1-3. Monocytes also mature to dendritic cells, which are frequently used for immunological studies4,5 and cancer research6,7.
Problematic in the approach for monocyte isolation from peripheral blood8 is the high number of donor animals needed to produce a sufficient amount of monocytes for most analyses. Former protocols describe methods such as density gradient centrifugation and cell depletion via MACS9 when isolating monocytes; however, these techniques can alter the characteristics and functionality of monocytes which can lead to difficulties in interpretation10,11. Moreover, these methods are difficult and can reduce experimental reproducibility.
Our aim with this protocol is to provide a simple and cost effective method to generate large amounts of bone marrow-derived monocytes. Due to the high cell yield of 11 x 106 ± 3 x 106 cells obtained by this protocol, we can substantially reduce the number of mice required during the isolation of bone marrow-derived monocytes. The procedure can be completed within a minimal amount of time, and without using expensive and complicated techniques as referenced above. Here, we extract monocytes from native bone marrow suspension of donor mice, cultivate the suspension on ultralow attachment plates, and supplement the solution with 20 ng/ml M-CFS. On day 5 of incubation, cells are harvested and characterized to confirm functional and phenotypic properties.
For experiments in the field of arteriogenesis, intravenous transplantation of these bone marrow-derived monocytes into mice is an effective method of systemic drug delivery, which can be combined with femoral artery ligation in common peripheral arterial disease models.
与萨克森州和萨克森 - 安哈尔特州,Regierungspraesidium德累斯顿/哈勒的国家批准进行这项研究,根据德国法律的保护动物(24D-9168.11-1 / 2008-24)第8。
1细胞分离
1.1准备股骨和胫骨的
1.2收获骨髓
1.3栽培
细胞收获1.4
注意:这些步骤应在冰上进行。继续无论1.4.1或1.4.2相应。
1.5 FACS分析(可选)
注意:可以通过使用MACS的耗尽CD117 +茎和祖细胞的细胞悬浮液。使用制造商协议,在此过程中。
2.尾静脉注射
2.1准备
2.2抑制
2.3注塑
来自鼠骨髓中提取的细胞溶液包含各种细胞类型。主要的细胞类型是淋巴细胞,粒细胞和单核细胞。细胞类型可以通过尺寸和粒度,其示于图1中为5天后分化的收获两个天然悬浮液和细胞来估计。注意培养过程中的换档细胞组成。然而,人口的准确分类必须依靠细胞标记鲜明的表达。
用于识别的MPS-系统的细胞中最重要的标记是CD115,其功能是作为对M-CSF受体和专?...
我们描述了一个简单而具有成本效益的方法,以分离大量骨髓的小鼠单核细胞。相较于使用外周血其他协议,其中获得的单核细胞产率5 1.4×10 6,我们能够从一个单一的供体小鼠获得的11×10 6±3×10 6单核细胞更高的产量。
当考虑使用这种方法的挑战,它在非无菌条件下工作时,提供潜在的污染是重要的。如果冲洗和不遵守以下洗涤步骤正确,污染的细?...
The authors declare that they have no competing financial interests.
This work was supported by the DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) SFB 854 (Sonderforschungsbereich, collaborative research center).
Thanks to Hans-Holger Gärtner, Audiovisuelles Medienzentrum, Otto-von-Guericke University Magdeburg, Magdeburg, Germany, for technical support.
Name | Company | Catalog Number | Comments |
6-well-ultra-low-attachment plate | Corning Incorporated, NY, USA | 6-well-ultra-low-attachment plate, with cap, sterile | |
8- 12 week old, male, balb/c mice | Charles River, Sulzfeld, Germany | ||
96-well-plate | Greiner bio one GmbH, Frickenhausen, Germany | ||
Blue dead cell stain | Life technologies GmbH, Darmstadt, Germany | ||
Bovine serum albumine | GE Healthcare, Freiburg, Germany | Fraction V, pH 7.0 | |
Canules | B. Braun, Melsungen AG, Melsungen, Germany | 28G, 30G | |
CD115 | eBioscience, San Diego, USA | 12-1152 | |
CD11b | eBioscience, San Diego, USA | 53-0112 | |
Cell culture dish | Greiner Bio-One GmbH, Frickenhausen, Germany | With cap, steril | |
Centrifuge | Beckman Coulter GmbH, Krefeld, Germany | Allegra® X-15R centrifuge | |
Depilatory cream | Veet, Mannheim, Germany | ||
Disinfection agent | Schülke&Mayr GmbH, Norderstedt, Germany | Kodan Tinktur forte | |
Disposable scalpel No.10 | Feather safety razor Co.Ltd, Osaka, Japan | ||
EDTA | Sigma Aldrich, Hamburg, Germany | ||
Ethanol 96% | Otto Fischar GmbH und Co KG, Saarbrücken, Germany | ||
Extraction unit Pipetus | Hirschmann Laborgeräte GmbH & Co.KG, Eberstadt, Germany | ||
F4/80 | AbD Serotec, Düsseldorf, Germany | MCA497APC | |
FACS buffer | Manufactured by our group with single components | PBS, 0.5% BSA, 0.1% NaN3 | |
FACS device | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | BD FACS Canto II | |
FACS tubes | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | ||
Falcon® pipette | Becton Dickenson Labware, NY, USA | ||
Fetal calf serum | Sigma Aldrich, Hamburg, Germany | ||
Fine forceps | Rubis, Stabio, Switzerland | ||
Gloves | Rösner-Matby Meditrade GmbH, Kiefersfelden, Germany | ||
Gr1 | eBioscience, San Diego, USA | 53-5931 | |
Heating plate | Labotect GmbH, Göttingen, Germany | Hot Plate 062 | |
Incubator | Ewald Innovationstechnik GmbH, Bad Nenndorf, Germany | Incu safe | |
Isofluran | Baxter Deutschland GmbH, Unterschleißheim, Germany | ||
Light microscope | Carl Zeiss SMT GmbH, Oberkochen, Germany | Axiovert 40 °C | |
Macrophage-Colony Stimulating Factor | Sigma Aldrich, Hamburg, Germany | SRP3110 | |
Mechanical shaker | IKA, Staufen, Germany | ms2 minishaker | |
Medium 199 | PAA Laboratories GmbH, Pasching, Austria | Warm in 37 °C water bath before use | |
Micro test tubes | Eppendorf AG, Hamburg, Germany | ||
Microbiological work bench | Thermo Electron, LED GmbH, Langenselbold, Germany | Hera safe | |
Monocyte wash buffer | Manufactured by our group with single components | PBS, 0.5% BSA, 2 mM EDTA | |
Mouse restrainer | Various | ||
NaCl | Berlin Chemie AG, Berlin, Germany | ||
NaN3 (sodium acide) | Sigma Aldrich, Hamburg, Germany | ||
Neubauer counting chamber | Paul Marienfeld GmbH und Co.KG, Lauda-Königshofen, Germany | ||
Nylon cellsieve | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | Cell strainer, 70 µm mesh size | |
Penicillin/Streptomycin | Sigma Aldrich, Hamburg, Germany | ||
Phosphate buffered saline | Life technologies GmbH, Darmstadt, Germany | pH 7.4, sterile | |
Pipettes | Eppendorf AG, Hamburg, Germany | 10µl/100µl/200µl/1,000µl | |
Pipetting heads | Eppendorf AG, Hamburg, Germany | ||
Serological pipette | Greiner Bio-One GmbH, Frickenhausen, Germany | Cellstar 5 ml, 10 ml | |
Suction unit | Integra bioscience, Fernwald, Germany | Vacusafe comfort | |
Surgical scissors | Word Precision Instruments, Inc., Sarasota, USA | ||
Syringe | B. Braun, Melsungen AG, Melsungen, Germany | 1 ml Omnifix® -F insuline syringe | |
Tubes with cap | Greiner bio one GmbH, Frickenhausen, Germany | 15 ml/50 ml Cellstar tubes | |
Warm water bath | Julabo Labortechnik GmbH, Seelbach, Germany | Julabo SW22 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。