JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Glaucoma is characterized by damage to retinal ganglion cells. Inducing glaucoma in animal models can provide insight into the study of this disease. Here, we outline a procedure that induces loss of RGCs in an in vivo rat model and demonstrates the preparation of whole-mount retinas for analysis.

摘要

青光眼是一种影响视网膜神经节细胞(RGC)的中枢神经系统的疾病。研资局轴突组成视神经进行视觉输入到大脑的视觉感受。损害视网膜神经节细胞和它们的轴突导致视力丧失和/或失明。尽管青光眼的具体原因不明,为疾病的主要危险因素之一是升高的眼内压。在动物模型青光眼诱导过程是一个有价值的工具,研究人员在研究RGC死亡的机制。这样的信息可导致可能在预防视力丧失的有助于有效的神经保护治疗的发展。本文中的协议描述诱导的青光眼的方法-像,其中50微升2M的高渗盐水注入巩膜静脉丛在体内大鼠模型的条件。血管的热烫表示成功注入。此过程会导致视网膜神经节细胞的损失来模拟青光眼。一个月以下注射后,将动物处死,眼睛被除去。接着,角膜,晶状体和玻璃体被除去以使一个眼罩。视网膜然后从眼睛的后部剥离和钉扎到使用仙人掌针SYLGARD菜肴。在这一点上,在视网膜的神经元可染色进行分析。从这个实验结果表明,相对于内部控制时,视网膜神经节细胞的约25%是在过程的一个月内丢失。这个过程允许在体内大鼠青光眼模型的视网膜神经节细胞死亡的定量分析。

引言

青光眼是一组影响的神经元中的视网膜,具体而言,视网膜神经节细胞1-2眼疾。这些细胞的轴突收敛到成为视神经承载可视信息,其中视觉感知的大脑。因此损害视网膜神经节细胞和其轴突导致视觉缺陷。

与青光眼疾病相关的主要特征是RGC变性和死亡,增加的眼内压(IOP),并视盘拔罐和萎缩。这些特点导致视野丧失或完全,不可逆转的失明。目前,青光眼全球7000万人造成3失明。因此,它是世界上第三大致盲4的原因。

RGC死亡的青光眼的确切机制尚不清楚。许多研究已经完成,以解开这个谜。然而,已经知道的是,青光眼的主要危险因素之一是增加我Ñ​​眼压由于房水(AH)在眼睛的前房的不规则循环。 AH充当眼睛的缺血性前房无色透明的替代血液。它滋养周围的细胞,分泌删除废物从代谢过程,运输的神经递质,并允许在病理状态1的药物和眼内炎症细胞的循环。

房水流通的维护包括睫状体和小梁网。房水由睫状体产生的。然后,它流入前房维持眼组织的总体健康状况。 75 - 房水外流的80%时,流体通过在睫状肌海绵组织的三层过滤正在积极通过非颜料睫状体上皮分泌的。穿过小梁网并通过施累姆氏管其制止所述流体排出独立实体进入血液系统5。其余20 -流出的25%绕过小梁网和通过超滤和扩散通过uveo巩膜途径被动分泌。这一途径似乎是相对独立的眼压1。

当房水的生产和流出都失去平衡,压力增大眼内。如上所述,这种增加的眼内压是在青光眼的发展的主要危险因素。这种压力导致在眼睛的回视网膜神经元的复杂的层的损伤。损伤视神经的视网膜神经节细胞轴突导致大脑不再接收准确的视觉信息。其结果是,视觉的知觉丧失,并且可以发生完全失明。

到目前为止,还没有治愈青光眼。不同的治疗方法存在的主要目的是降低眼压。这些措施包括外用药物类,如β1的肾上腺素能受体阻断剂,或局部前列腺素类似物。 β阻滞剂通过减少房水的产生7的降低眼内压。前列腺素的作用,通过增加房水8-14外流以减少眼压。 α-肾上腺素能激动剂和碳酸酐酶抑制剂也可作为治疗的辅助方法。阿尔法肾上腺素受体 ​​激动剂通过葡萄膜巩膜途径15-17加大流出。碳酸酐酶抑制剂,通过抑制酶的18降低生产AH的。更侵入性程序也被用于治疗青光眼。激光小梁成形术是用于增加房水19的流出。另一个手术疗法,称为小梁切除术,创建了一个另类的排水现场时,传统的小梁途径被阻断20-21过滤啊。

这些治疗方案已经知道EFFectively眼压降低。然而,青光眼患者的高达40%的正常显示眼压水平表明需要更完整的治疗方法。22,23此外,在青光眼看到视网膜神经节细胞的死亡是不可逆的,一旦开始,目前的治疗不停止疾病的进展24-28。这强调了靶向神经元本身的生存有效的神经保护治疗的需要。青光眼模型的发展是这一发展的关键。

在这项研究中,我们证明使用最初由莫里森29中概述的改性过程诱导成年龙Evans大鼠青光眼样作用的方法。在此过程中,2M的高渗盐水注射到巩膜静脉丛被瘢痕组织引起青光眼样的条件,以减少在小梁网,导致增加的眼内压和视网膜神经节细胞的w的显著损失水状液流出ithin程序30-31的一个月。青光眼诱导程序,如这里描述的,可能是关键解锁在青光眼治疗的新发展。

研究方案

使用受试动物的所有程序已经按照动物护理和使用委员会(IACUC)在西密歇根大学研究所的标准。

1.动物

  1. 使用雄性和雌性大鼠3个月大了这项研究。
  2. 保持12小时光/暗周期动物自由获取食物和水。

2. KAX鸡尾酒动物麻醉的制备

  1. 在5ml氯胺酮(100毫克/毫升)与1ml乙酰丙嗪(10毫克/毫升)和3毫升蒸馏水溶解50mg的甲苯噻嗪(20毫克/毫升)的。调匀。
  2. 用注射器过滤消毒并存储该溶液到10ml血清瓶中。

3.注射KAX

  1. 称取动物(G),并返回到笼子里,直到准备注射。
  2. 注入0.1毫升KAX / 100g的动物体重腹膜内,使用具有28克针1毫升胰岛素注射器。
  3. 允许动物变得不省人事。捏脚和尾巴检查见长。
  4. 保留所有动物安全实验室进行手术的时间。
  5. 手术后,替代动物进入它们的笼子,并在RT保持舒适的意识,直到重新获得。只有回到动物动物设施当动物苏醒并恢复正常的行为。

4.准备手术以及微大会

  1. 使无菌2M的NaCl溶液。
  2. 使用微电极拉出器( 图1C)到拉一0.86毫米内径重抛光标准和薄壁的硼硅管成两个细的锥形玻璃微针( 图1D,图1E)。
  3. 从与用回填注射器针和1ml注射器( 图1B)的2M食盐先前步骤回填一个微型针。从电极的尖端挖掘出气泡。
  4. 填写第二1ml注射器用2M氯化钠。连接一个18G的针头,然后安装聚乙烯管( 图1A)的长度(约10英寸)。使用针筒柱塞通过针来填充用生理盐水聚乙烯管。
  5. 当两个微针和导管填充有盐水,仔细连接两个。消除任何空气中( 图2)在它们之间的连接。
  6. 刮得很轻轻地靠着一门课程纸巾的晶粒细锥微针的尖端。
  7. 轻轻推动注射器柱塞,直到液体的微细流可以在纸巾中可以看出检查微针的电阻。的液体流应不大于0.5mm宽。

5.编写动物

  1. 应用1 - 2滴局部麻醉剂至角膜(丙美卡因盐酸眼用溶液,USP,0.5%)。等到没有眼反射发生。
  2. 修剪用剪刀晶须。
  3. 小号aturate与优碘溶液和周围的实验眼拭子区棉尖涂药。
  4. 使用显微镜,重视止血钳将上下眼睑鼓起眼睛,露出巩膜静脉和限制眼球运动。 ( 图3,箭头)

6.青光眼诱导盐水注射

  1. 当制备微针组装和动物,开始注射。
  2. 当动物被证实是没有反应英尺/尾捏,小心地在到静脉( 图3,白色箭头)10和20度之间的低角度来刺破用微针的巩膜静脉。一个成功的穿刺到静脉可知当血液进入微针( 图3,黑色箭头)的前端。
  3. 慢慢地,手动注入约50微升生理盐水静脉。这大约需要10秒。静脉将灼白盐循环救援人员到场啊脉管( 图4,箭头)。一些地区可能维持一个血红色的外观( 图4,箭头)。
    1. 执行第二注射到静脉,相对的第一部位,以确保对完整视网膜神经节细胞层彻底视网膜损伤。
      注意:在几分钟之内,应该看到,通过眼睛的虹膜独特混浊外观的盐循环通过血管系统。
  4. 离开对面眼未处理用作内部对照。

7.动物恢复

  1. 取出止血。
  2. 用棉签三联抗生素软膏(杆菌肽锌,硫酸新霉素,polymysin乙硫酸盐)适用于止血和注射部位夹住的部位。眼部周围组织损伤不会出现使用止血。
  3. >将麻醉动物在笼子上的循环温水毯上一个耳鼻喉科体温过低。不时观察动物直至意识和正常行为的恢复。运输清醒动物回到动物殖民地。动物留在殖民地,直到牺牲的时间。

8.动物牺牲和视网膜去除

  1. 一个月之后,以诱发青光眼的过程中,动物用CO 2窒息和二次胸穿安乐死。
    1. 放置在腔室中的动物,并把盖子上的安全。
    2. 打开 CO 2和气体调节阀,以允许20%体积/分钟 CO 2的位移 氧气在该腔室。
    3. 允许四到5分钟的动物过期。
    4. 关闭两个阀门。
    5. 从腔室中取出的动物和用无菌解剖刀执行辅助胸椎穿刺。
  2. 安乐死后,用手术刀切在眼眶周围的眼睛,贝结缔组织NG小心不要切入眼球本身。
  3. 小心使用曲边剪刀剪断视神经和任何剩余的组织中提取完整的眼球。将提取的眼球无菌60毫米×15毫米培养皿一次性含有新鲜的PBS菜。
  4. 使从眼球的眼罩。要做到这一点,请用手术刀小切口正好后方虹膜和巩膜之间的边界。按照眼部周围的小弹簧剪刀圆周此切口从眼球取出角膜半球。连接到视神经半球保持。
  5. 查找安乐死的动物眼罩内的非常薄的粉红/米色视网膜。握住钝镊子视网膜的色素层,以稳定眼罩。使用另一对闭合钳非常轻轻挑逗整个完整的视网膜落睛的背面。避免捏,拉,或揪着直接视网膜。
  6. 用小弹簧剪刀剪开区域,视神经仍连接到视网膜。
  7. 一定要切掉从视网膜任何残留色素上皮或巩膜组织。
  8. 使用移液管,分离的视网膜轻轻转移到涂覆的含有新鲜的PBS35毫米×10mm的皮氏培养皿一干净SYLGARD。

9.整个安装视网膜准备

  1. 一旦在Sylgard菜,使用镊子和一个仙人掌针引脚视网膜到位。保持视网膜神经节细胞层朝上和视神经下来。视网膜的半球形状,即使固定后显着。视网膜的曲率将卷曲朝向天花板时视网膜神经节细胞层是在所希望的方向。
  2. 用小剪刀到视网膜切成四个象限,使得四叶草从视神经头散热的形状。
  3. 针附加仙人掌针的视网膜象限使视网膜尽可能平坦无覆盖UT拉伸( 图5)。
  4. 修复在Sylgard菜的固定视网膜用3毫升的4%多聚甲醛O / N在室温。

视网膜10.抗体染色

注意:与第一和第二抗体染色的固定视网膜中视网膜观看神经元( 图6)。

  1. 漂洗固定的,平面安装视网膜2分钟3次,每次在PBS中。
  2. 透视网膜,用1%的Triton X-100用在PBS中的1%胎牛血清60分钟。
  3. 漂洗视网膜三次,每次2分钟,在PBS中。
  4. 用0.1%的Triton X-100的PBS,每次洗涤5分钟漂洗两次。
  5. 用PBS,每洗5分钟,冲洗两次。
  6. 与在RT 1%的Triton X-100和1%胎牛血清的PBS中孵育45分钟。
  7. 用0.1%的Triton X-100的PBS,每次洗涤5分钟漂洗两次。
  8. 用PBS,每洗5分钟,冲洗两次。
  9. 孵育在PBS中的3毫升1-%胎牛血清每个视网膜用纯化的小鼠抗大鼠CD90 /小鼠CD90.1(1:300稀释)O / N在室温。
  10. 用0.1%的Triton X-100冲洗视网膜一旦在PBS 5分钟。
  11. 用PBS,每洗5分钟,冲洗两次。
  12. 继发的Alexa Fluor 594山羊抗小鼠IgG孵育在3ml的PBS(无FBS)的各视网膜(1:300)O / N在室温。
  13. 用PBS洗涤宽松视网膜。
  14. 使用解剖显微镜,小心地从视网膜移除仙人掌针。
  15. 轻轻地用移液管转移到视网膜显微镜载玻片。一定要保持朝向天花板视网膜神经节细胞层的方向。视网膜的半球形状,即使固定后显着。视网膜的曲率将卷曲朝向天花板时视网膜神经节细胞层是在所希望的方向。
  16. 吸收任何过量的PBS与的Kimwipe或其它这类吸湿材料。要小心,不要吸收视网膜。
  17. 加入5滴½甘油和重量上午½PBSounting媒体。
  18. 盖上盖玻片视网膜,避免产生气泡。
  19. 安全使用盖玻片透明指甲油,胶水或其他粘合剂。

结果

本节说明用于诱导在体内大鼠青光眼模型青光眼样条件的装置组件和过程。我们表明用于执行高渗盐水注射导致眼内压增加的个体的工具和设备。我们展示了注入以其特有的漂白效果和前房导致的浑浊外观巩膜静脉丛。我们还描述了视网膜去除和平面安装丢失RGC的分析过程。最后,我们显示在视网膜神经节细胞存活的注射的效果。作为视网膜神经节细胞的分布是在?...

讨论

这个协议描述诱导在体内大鼠模型青光眼样病症的方法。此过程使用高渗盐水的注射诱导疤痕在小梁网29,32。发展疤痕组织闭塞房水的流出这增加前房压力。随着流出和压力降低建立,通过弹性悬挂韧带镜头推回到玻璃体腔。玻璃体然后施加压力到视网膜损害脆弱的视网膜神经细胞。使用此过程我们的结果表明,视网膜神经节细胞数开始以2周1个月后的过程神经节细胞损失显著损?...

披露声明

The authors have no conflicting or competing interests to disclose.

致谢

C. Linn is supported by an NIH grant (NIH NEI EY022795).

材料

NameCompanyCatalog NumberComments
Xylazine hydrochloride, Minimum 99%Sigma, Life ScienceX1251-1G
Ketamine hydrochloride injection, USP, 100mg/ml Putney, IncNDC 26637-411-0110 ml bottle
Acepromazine Maleate, 10mg/mlPhoenix Pharmaceutical, IncNDC 57319-447-04, 670008L-03-040850 ml bottle
Serum bottle, 10 mlVWR16171319Borosilicate glass
1 ml insulin syringe VWRBD32941028 G needle 
Sodium chlorideSigma S76532 M Solution 
Microelectrode Puller Narishige GroupPP-830
Heavy Polished Standard and Thin Walled Borosilicate Tubing Sutter InstrumentsB150-86-10HPwithout filament, 0.86 mm
Microfil syringe needle for filling micropipettesWorld Precision Instruments, IncMF28G
18 gauge Luer-Lock needleFisher Scientific1130421Syringe needle
Flexible Polyethylene TubingFisher Scientific220469410.034 inch diameter, approximately 10 inches 
Proparacaine Hydrochloride Opthalmic Solution, USP, 0.5%Akorn, IncNDC 17478-263-1215 ml  sterile bottle 
Curved ScissorsFine Science Tools14061-11
MicroscopeLeica StereoZoom 4
Hemostat Clamp Fine Science Tools1310912curved edge
Triple Antibiotic Ointment Fisher ScientificNC0664481
Scalpel handleFine Science Tools 10004-13
Scalpel blade #11Fine Science Tools 10011-00
60 mm x 15 mm Disposable Petri DishVWR351007
Phosphate Buffered Saline 10x ConcentrateSigma, Life Science P7059-1L1x dilution 
Spring ScissorsFine Science Tools 15009-08
Forceps (2), Dumont # 5Fine Science Tools11251-30
3 ml Transfer Pipets, polyethylene, non sterileBD Biosciences357524 or 52947-9481 and 2 ml graduations
35 mm x 10 mm Easy Grip Petri Dish BD Biosciences351008
Sylgard 184VWR102092-312
Cactus Needles
ParaformaldehydeEMD Millipore PX0055-3 or 818715.0100Made into a 4% solution 
Triton X-100Sigma T9284-100 mlMade into both a 1% and 0.1% solution 
Fetal Bovine Serum Atlanta BiologicalS11150500 ml
Purified Mouse Anti-Rat CD90/mouse CD90.1BD PharmingenCat 5548921:300 dilution 
Alexa Fluor 594 goat anti-mouse Life Technologies A110051:300 dilution 
Microscope SlidesCorning 2948-75x25
Glycerol Sigma G5516-100 ml 50% glycerol to 50% PBS, by weight 
Coverglass Corning 2975-225Thickness 1 22 x 50 mm 
Confocal MicroscopeNikon C2 Eclipse Ti

参考文献

  1. Goel, M., Picciani, R. G., Lee, R. K., Bhattacharya, S. K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 4, 52-59 (2010).
  2. Thylefors, B., Negrel, A. D. The global impact of glaucoma. Bull. World Health Organ. 72 (3), 323-326 (1994).
  3. Thylefors, B., Negrel, A. D., Pararajasegaram, R., Dadzie, K. Y. Global data on blindness. Bull. World Health Organ. 73 (1), 115-121 (1995).
  4. Roodhooft, J. M. Leading causes of blindness worldwide. Bull Soc. Belge. Ophtalmol. 283, 19-25 (2002).
  5. Sacca, S., Pulliero, A., Izzotti, A. The Dysfunction of the Trabecular Meshwork During Glaucoma Course. J. Cell. Physiol. 230 (3), 510-525 (2014).
  6. McKinnon, S. J., Goldberg, L. D., Peeple, P., Walt, J. G., Bramley, T. J. Current Management of Glaucoma and the Need for Complete Therapy. Am. J. Manag. Care. 14 (1 Suppl), S20-S27 (2008).
  7. Lee, D. A., Higginbotham, E. J. Glaucoma and its treatment: a review. Am. J. Health Syst. Pharm. 62, 691-699 (2005).
  8. Brandt, J. D., Vandenburgh, A. M., Chen, K., Whitcup, S. M. Bimatoprost Study Group. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: a 3-month clinical trial. Ophthalmology. 108, 1023-1031 (2001).
  9. Camras, C. B. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group. Ophthalmology. 103, 138-147 (1996).
  10. Netland, P. A., et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 132, 472-484 (2001).
  11. Sherwood, M., Brandt, J. Bimatoprost Study Groups 1 and 2. Six-month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv. Ophthalmol. 45 (Suppl 4), S361-S368 (2001).
  12. Watson, P., Stjernschantz, J. A six-month, randomized, double-masked study comparing latanoprost with timolol in open-angle glaucoma and ocular hypertension. The Latanoprost Study Group. Ophthalmology. 103, 126-137 (1996).
  13. Hedman, K., Alm, A., Gross, R. L. Pooled-data analysis of three randomized double-masked, six-month studies comparing intraocular pressure-reducing effects of latanoprost and timolol in patients with ocular hypertension. J. Glaucoma. 12 (6), 463-465 (2003).
  14. Schumer, R. A., Podos, S. M. The nerve of glaucoma!. Arch. Ophthalmol. 112, 37-44 (1994).
  15. Tsai, J. C., Chang, H. W. Comparison of the effects of brimonidine 0.2% and timolol 0.5% on retinal nerve fiber layer thickness in ocular hypertensive patients: a prospective, unmasked study. J. Ocul. Pharmacol. Ther. 21 (6), 475-482 (2005).
  16. Wilhelm, B., Ludtke, H., Wilhelm, H. The BRAION Study Group. Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch. Clin. Exp. Ophthalmol. 244, 551-558 (2006).
  17. Fazzone, H. E., Kupersmith, M. J., Leibmann, J. Does topical brimonidine tartrate help NAION?. Br. J. Ophthalmol. 87, 1193-1194 (2003).
  18. Harris, A., Arend, O., Kagemann, L., Garrett, M., Chung, H. S., Martin, B. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J. Ocul. Pharmacol. Ther. 15, 189-197 (1999).
  19. Leahy, K. E., White, A. J. Selective laser trabeculoplasty: current perspectives. Clin. Ophthalmol. 11 (9), 833-841 (2015).
  20. Nesaratnam, N., Sarkies, N., Martin, K. R., Shahid, H. Pre-operative intraocular pressure does not influence outcome of trabeculectomy surgery: a retrospective cohort study. BMC Ophthalmol. 15 (1), 17 (2015).
  21. Cairns, J. E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 66 (4), 673-679 (1968).
  22. Cheng, J. W., Cai, J. P., Wei, R. L. Meta-analysis of medical intervention for normal tension glaucoma. Ophthalomology. 116 (7), 1243-1249 (2009).
  23. Dielmans, I., Vingerling, J. R., Wolfs, R. C. W., Hofman, A., Grobbee, D. E., deJong, P. T. V. M. The prevalence of primary open-angle glaucoma in a population based study in The Netherlands: the Rotterdam Study. Ophthalmology. 101, 1851-1855 (1994).
  24. Lichter, P. R., et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 108 (11), 1943-1953 (2001).
  25. Heijl, A., et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120 (10), 1268-1279 (2002).
  26. Kass, M. A., et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120 (6), 701-713 (2002).
  27. Beidoe, G., Mousa, S. A. Current primary open-angle glaucoma treatments and future directions. Clin. Ophthalmol. 6, 1699-1707 (2012).
  28. Jeong, J. H., Park, K. H., Jeoung, J. W., Kim, D. M. Preperimetric normal tension glaucoma study: long-term clinical course and effect of therapeutic lowering of intraocular pressure. Acta. Ophthalmol. 92 (3), e185-e193 (2014).
  29. Morrison, J. C., Moore, C. G., Deppmeier, L. M., Gold, B. G., Meshul, C. K., Johnson, E. C. A Rat Model of Chronic Pressure-Induced Optic Nerve Damage. Exp. Eye Res. 64 (1), 85-96 (1997).
  30. Morrison, J. C., Johnson, E., Cepurna, W. O. Rat Models for Glaucoma Research. Prog. Brain Res. 173, 285-301 (2008).
  31. Iwamoto, K., Birkholz, P., Schipper, A., Mata, D., Linn, D. M., Linn, C. L. A Nicotinic Acetylcholine Receptor Agonist Prevents Loss of Retinal Ganglion Cells in a Glaucoma Model. Invest. Ophthalmol. Vis. Sci. 55 (2), 1078-1087 (2014).
  32. Morrison, J. C., Fraunfelder, F. W., Milne, S. T., Moore, C. G. Limbal Microvasculature of the Rat Eye. Invest. Ophthalmol. Vis. Sci. 36 (3), 751-756 (1995).
  33. McKinnon, S. J., Schlamp, C. L., Nickells, R. W. Mouse Models of Retinal Ganglion Cell Death and Glaucoma. Exp. Eye Res. 88 (4), 816-824 (2009).
  34. Maass, A., et al. Assessment of Rat and Mouse RGC Apoptosis Imaging in Vivo with Different Scanning Laser Ophthalmoscopes. Curr. Eye Res. 32 (10), 851-861 (2007).
  35. Li, Y., Schlamp, C. L., Nickells, R. W. Experimental induction of retinal ganglion cell death in adult mice. Investig. Ophthalmol. Vis. Sci. 40 (5), 1004-1008 (1999).
  36. Gross, R. L., et al. A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans. Am. Ophthalmol. Soc. 101, 163-171 (2003).
  37. Cenni, M. C., Bonfanti, L., Martinou, J. C., Ratto, G. M., Strettoi, E., Maffei, L. Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur. J. Neurosci. 8 (8), 1735-1745 (1996).
  38. Templeton, J. P., Geisert, E. E. A practical approach to optic nerve crush in the mouse. Mol. Vis. 18, 2147-2152 (2012).
  39. Schlamp, C. L., Johnson, E. C., Li, Y., Morrison, J. C., Nickells, R. W. Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol. Vis. 7, 192-201 (2001).
  40. Libby, R. T., et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 1, 17-26 (2005).
  41. Yang, Z., et al. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest. Ophthalmol. Vis. Sci. 48 (12), 5539-5548 (2007).
  42. Huang, W., Fileta, J., Guo, Y., Grosskreutz, C. L. Downregulation of Thy1 in retinal ganglion cells in experimental glaucoma. Curr. Eye Res. 31 (3), 265-271 (2006).
  43. Smedowski, A., Pietrucha-Dutczak, M., Kaarniranta, K., Lewin-Kowalik, J. A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci. Rep. 4, 1-11 (2014).
  44. Cone, F. E., Gelman, S. E., Son, J. L., Pease, M. E., Quigley, H. A. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp. Eye Res. 91 (3), 415-424 (2010).
  45. Pease, M. E., Cone, F. E., Gelman, S., Son, J. L., Quigley, H. A. Calibration of the TonoLab tonometer in mice with spontaneous or experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 52 (2), 858-864 (2011).
  46. Cone, F. E., et al. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp. Eye Res. 99, 27-35 (2012).
  47. Frankfort, B. J., et al. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 54 (1), 762-770 (2013).
  48. Sappington, R. M., Carlson, B. J., Crish, S. D., Calkins, D. J. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest. Ophthalmol. Vis. Sci. 51 (1), 207-216 (2010).
  49. Kalesnykas, G., et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 53 (7), 3847-3857 (2012).
  50. Cone-Kimball, E., et al. Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice. Mol. Vis. 19, 2023-2039 (2013).
  51. Samsel, P. A., Kisiswa, L., Erichsen, J. T., Cross, S. D., Morgan, J. E. A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest. Ophthalmol. Vis. Sci. 52 (3), 1671-1675 (2011).
  52. WoldeMussie, E., Ruiz, G., Wijono, M., Wheeler, L. A. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest. Ophthalmol. Vis. Sci. 42 (12), 2849-2855 (2001).
  53. Garcia-Valenzuela, E., Shareef, S., Walsh, J., Sharma, S. C. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp. Eye Res. 61 (1), 33-44 (1995).
  54. Aihara, M., Lindsey, J. D., Weinreb, R. N. Experimental mouse ocular hypertension: establishment of the model. Investig. Ophthalmol. Vis. Sci. 44 (10), 4314-4320 (2003).
  55. Ji, J., et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res. 45 (2), 169-179 (2005).
  56. Flammer, J., et al. The eye and the heart. Eur. Heart J. 34 (17), 1270-1278 (2013).
  57. Gugleta, K., et al. Association between risk factors and glaucomatous damage in untreated primary open-angle glaucoma. J. Glaucoma. 22 (6), 501-505 (2013).
  58. Mozaffarieh, M., Flammer, J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr. Opin. Pharmacol. 13 (1), 43-49 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

109

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。