JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了隔离幼虫斑马鱼,这将有利于斑马鱼的性别分化和维护的调查性腺组织的协议。

摘要

虽然野斑马鱼拥有ZZ / ZW性别决定系统,驯化斑马鱼已经失去了性染色体。他们利用一种多基因遗传性别决定系统,其中几个基因分布在整个基因组共同确定个别鱼类的性别身份。目前,参与调节性腺发育的基因以及它们如何工作仍然是难以捉摸的。通常情况下,隔离生殖腺组织是第一步检查性发育过程。在这里,我们提出了一个程序,从17旦(天受精后)和25 DPF斑马鱼隔离性腺组织。分离的性腺组织可以通过形态学和基因表达谱随后检查。

引言

主要女性性决定簇在野生斑马鱼染色体4被丢失或在家养斑马鱼修改( 普通实验室菌株)1。相反,他们必须伴随着环境因素,如温度,缺氧,粮食供应和人口密度的多基因遗传性别决定系统。斑马鱼的性发育的具体机制尚不完全清楚。基本问题时斑马鱼的性别决定发生诸如什么初级性别确定信号(s)为/是,并且该基因的调节性腺变换的第一步骤有待回答2,3。

在斑马鱼性发育的过程中,有几个重要阶段已被确认。在开发的早期阶段,从4 HPF(小时受精后)原始生殖细胞(PGC的)经受说明书中,开始迁移生殖脊和增殖。 PGC号和生殖细胞和体细胞之间的相互相互作用对性腺分化的4个重要。在13 DPF(天受精后),性腺是未分化的阶段。 17个DPF,性腺发育成两个未来的男性和女性双重潜能卵巢。从卵巢细胞凋亡相关的过渡睾丸开始在21至25 DPF并可能持续数周。由35个单丝旦,生殖腺的性别已经确定和性别特异性配子生产正在进行在双侧卵巢和睾丸5,6,7。

迄今为止,不同的候选基因和性别决定机制已经被提出。蛋白质组学和转录分析已经分离的许多基因与性二态表达和这些基因已被用来研究性别分化在斑马鱼8, 9,10。例如,在斑马鱼幼体中,cyp19a1a基因特别是在卵巢中表达,但不在睾丸11,12。此外,AMH基因在卵泡颗粒细胞弱表达,但在强烈的睾丸支持细胞13。与此相反, 滋养基因在女性和男性斑马鱼的生殖细胞中持续表达,使其成为一个合适的性腺标记14,15。

调查性腺基因表达水平关键是要了解的性别决定和分化的分子机制特别是在双电位卵巢阶段3,9。然而,幼虫斑马鱼和相应小性腺的小尺寸复杂gonada的隔离升组织进行进一步的分子分析。用以前的研究解剖鳃和肛门孔16之间的整个主体区域。该制剂,尽管含有性腺,由多个组织和器官的。可替代地,与特定的性腺-GFP表达的转基因动物,如滋养:EGFP的通过荧光激活细胞分选(FACS)和激光捕获显微解剖17,18用于性腺组织分离。但它们的广泛应用受到限制。在这里,我们描述了一个简单的过程在17 DPF和DPF 25从幼虫斑马鱼隔离性腺组织。我们证明性腺的位置相对于其他器官与周围组织分离形态完整的性腺。进一步的研究表明特定性腺基因如滋养和cyp19a1a在隔离性腺中高度表达通过定量PCR躯干组织(相定量PCR)分析。本协议允许鉴定,分离,RNA纯化和从幼虫斑马鱼性腺特异性基因扩增,由此使生殖腺组织19的随后的分子分析。

研究方案

斑马鱼实验由复旦大学机构动物护理和使用委员会的批准。斑马鱼是根据标准程序20所提出和繁殖。

1.准备

  1. 培养17 DPF和DPF 25斑马鱼幼体
    1. 转让2男2女成年斑马鱼(健康,3〜6个月的时候,实验室阿布·斯特兰)的交叉罐傍晚道口前一天。分离男性和女性用的屏障。第二天早上,刷新水箱水并去除障碍,让他们交配。收集100个25mm培养皿受精后1至2小时的卵。
    2. 在早期发育期(4天)保持在100毫米板用40mL胚胎培养基(EM)约40胚胎在28.5℃,一天刷新EM两次。幼虫转移至1L罐(40幼虫至300mL水系统)和5单丝旦后用活轮虫(全供给,一天两次)进料。经过10 DPF饲料活海虾代替轮虫饮食。转移成鱼重新循环水系统在14 DPF 21。
    3. 提高幼虫斑马鱼在重新循环水系统,直到17单丝旦或25单丝旦。确保光/暗周期是系统水的14/10小时,pH值约7.2。测量17单丝旦(5.5至6.8毫米),25旦(8到11mm)幼虫22的主体长度。
  2. 制备2%琼脂平板上的清扫。
    1. 4克琼脂添加到200mL的无菌水中。加热该混合物在微波炉中,直到它变成透明的。
    2. 冷却琼脂溶液中约15分钟,然后将其倒入直径60个毫米的培养皿中(大约1/3体积的板)。存储在4℃下将固化的琼脂平板上。

2.方案1:解剖17生殖腺组织和25单丝旦幼虫

  1. 加入碎冰进入水箱进行麻醉,17 DPF幼虫。转让麻醉幼虫冷却培养皿用30mL冷的林格氏溶液100毫米。保持鱼在冷冻林格氏液培养至少15分钟,以完全麻醉的幼虫。
  2. 转移幼虫预冷的琼脂平板上用小塑料勺子。淹没整个鱼身在冷却林格氏溶液10毫升,并轻轻摊放在其一侧。
  3. 做25X立体显微镜的视野下进行以下操作。卡件与镊子稳定鱼树干。从肛门到心脏与其他镊子纵向撕裂腹部。轻轻卸下身体的一侧的皮肤和肌肉,露出内脏。
  4. 除去内脏腹仔细鳔的质量。避免损坏连接到鳔性腺。
  5. 切断鱼鳔和前体之间的连接。拉出整个鱼鳔,轻轻性腺组织。
    注意:在大多数情况下,S,在17单丝旦的性腺组织含有周围上皮组织和protonephridium。它们不容易相互分离,但在25 DPF它可以很容易地分离。性腺也连接到肛门。与肛门相互连接左右性腺的结将清晰可见。
  6. 用镊子小心地将性腺组织从鱼鳔分离和清理周围的脂肪组织。
  7. 立即分离的性腺组织转移到含有200μL林格氏溶液预冷的1.5毫升离心管中。保持管在冰上直至所有性腺组织从幼虫分开。
  8. 2.7 - 如步骤2.1中所述的解剖25单丝旦幼虫性腺。

3.协议2:分析分离的性腺组织的基因表达

  1. 从幼虫性腺组织提取总RNA。
    1. 转让孤立性腺组织到一个新的无RNase 1。5mL的管和除去林格氏溶液。加入100μL裂解液。涡直至组织完全溶解。
    2. 根据制造商的说明进行总RNA提取操作。
    3. 添加1/10体积的10倍的DNA酶I缓冲液和DNA酶I的1μL至RNA溶液并轻轻混合。在37℃下孵育20分钟。
    4. 添加1/10体积的DNA酶失活试剂的RNA溶液。在70℃下孵育10分钟。测量使用分光光度计总RNA的浓度。存储在-20℃。
  2. 执行第一链cDNA合成
    1. 使用寡(dT)引物 - 接头按照制造商的方案来进行第一链cDNA的合成。加入RNA的1至2微克至总反应体积〜20μL。
    2. 孵育在45℃下90分钟的反应溶液中。终止在70℃下5分钟,通过加热进行反应。
    3. 加入1μlRNA酶H至cDNA,以便lution以除去残留的RNA。在〜13000×g下轻轻混匀,离心10秒。在37℃下孵育20分钟。加入20微升不含核酸酶的水。存储在-70℃。
  3. 执行荧光定量PCR
    1. 一个循环仪上用荧光染料进行定量PCR。使用下面的PCR循环条件:35个循环的95℃15秒,TM-5℃15秒,68℃30秒。使用的引物序列如下:AMH(正向:GTGGATGGCAGCAGTACGAC;启:GCGGAGAGGTGGAAGAGAGAATG),cyp19a1a(正向:GTCCTGTTGTCTCCTACTGTCG;启:CATTTGAGTTGAATATGATGCCCTG),nanos3(正向:GCTCGGTGTACGCCAAATCAACAT;启:CCAAGTGAAAACACAACACCAGTGC), 滋养 (正向:ATCGCATAGGAAGAACTGGACGCT;启:CCAAGTGAAAACACAACACCAGTGC)和β肌动蛋白 (正向:AGTGCGACGTGGACATCCGTA;启:GCACTTCCTGTGGACGATGGA)19。

结果

性腺的解剖上阿布·斯特兰幼虫斑马鱼进行。 图1示出在17和DPF 25单丝旦幼虫斑马鱼的典型性腺组织。首先,皮肤和腹部的一侧的肌肉被切断,露出内脏。去除内脏的质量后,鳔与性腺一起留在树干。性腺附接到鱼鳔的腹侧( 图1B中的箭头')。在17个DPF,生殖腺是在双重潜能卵巢阶段。经分离的性腺包含在左侧和?...

讨论

斑马鱼已成为一个强大的模型,并在发展和疾病相关的研究被广泛使用。在成年斑马鱼的器官,如大脑,心脏,性腺和肾脏的分离的方法,很好地证明了23,24,25。由于体积小,在幼虫斑马鱼性腺组织的动态重构,性腺组织的分离是一项艰巨的任务。以前的研究中使用的整体解剖躯干组织或转基因滋养:基于EGFP细胞分选和激光?...

披露声明

作者宣称,他们没有竞争的经济利益。

致谢

我们感谢ç张鱼照顾。这项工作是由中国国家自然科学基金(31171074,31371099和31571067至GP)和浦江人才计划(09PJ1401900到GP)的支持。

材料

NameCompanyCatalog NumberComments
Cell culture dish 100 mmCorning430167For embryo incubation
20x EMFor a 1 L needed: add 17.5 g NaCl, 0.75 g KCl and 2.9 g CaCl·2H2O; then add 0.41 g KH2PO4, 0.412 g Na2HPO4 anhydrous and 4.9 g MgSO4·7H2O.
1x EMDilute 20x EM in distilled water
AGAROSE G-10Gene121985For preparing the 2% agar plates
Trizol ReagentInvitrogen15596-026For RNA isolation
Meter glassShen Bo250 mlFor preparing the 2% agar plates
Microwave OvenMideaM1-211AFor heating the AGAR
Tweezer DUMONT#5INOXWorld Precision Instrument500341For dissection
StereomicroscopeMoticSMZ168For dissection
Pure water equipmentMillipore
Ringer’s solutionFor a 1 L needed: Add 6.78 g NaCl, 0.22 g KCl, 0.26 g CaCl2 and 1.19 g Hepes; then fill to 1 L; Adjust pH to 7.2. Sterilize by filtration and keep in an autoclaved clear polycarbonate container.
Transfer pipetteSamco202, 204
Metal bathQiLinbeierModel GL-150
MicroscopeLeica M205 FAFor photomicrograph
CentrifugeEppendorf5417R
Micro Scale RNA Isolation KitAmbionAM1931For RNA isolation from gonad tissues
Dnase ISigmaAMPD1-1KTFor DNA digestion in the RNA solution
RevertAid First Strand cDNA Synthesis KitThermo Scientific#K1631For first-strand cDNA synthesis
Rnase HThermo Scientific#EN0202For digesting the residual RNA in the cDNA solution.
SYBR Green Realtime PCR Master MixTOYOBOQPK-201This product is a Taq DNA polymerase-based 2x master mix for real-time PCR and  applicable for intercalation assay with SYBR Green I.
SpectrophotometerNe DropOD-2000+Measuring the concentration of the total RNA
MastercyclerEppendorfAG 22331 Hamburggene expression profiling

参考文献

  1. Wilson, C. A., et al. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics. 198 (3), 1291-1308 (2014).
  2. Liew, W. C., Orban, L. Zebrafish sex: a complicated affair. Genomics. 13 (2), 172-187 (2014).
  3. Orban, L., Sreenivasan, R., Olsson, P. Long and winding roads: Testis differentiation in zebrafish. Mol. Cell. Endocrinol. 312 (1-2), 35-41 (2009).
  4. Blaser, H., et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118, 4027-4038 (2005).
  5. Wang, X. G., Orban, L. Anti-Müllerian hormone and 11 β-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Dev. Dynam. 236 (5), 1329-1338 (2007).
  6. Siegfried, K. R., Nüsslein-Volhard, C. Germ line control of female sex determination in zebrafish. Dev. Biol. 324 (2), 277-287 (2008).
  7. Uchida, D., Yamashita, M., Kitano, T., Iguchi, T. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J. Exp. Biol. 205 (Pt 6), 711-718 (2002).
  8. Groh, K. J., Schönenberger, R., Eggen, R. I. L., Segner, H., Suter, M. J. F. Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen. Comp. Endocr. 193, 210-220 (2013).
  9. Siegfried, K. R. In search of determinants: gene expression during gonadal sex differentiation. J. Fish Biol. 76 (8), 1879-1902 (2010).
  10. Small, C. M., Carney, G. E., Mo, Q., Vannucci, M., Jones, A. G. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics. 10, 579 (2009).
  11. Chiang, E. F., Yan, Y. L., Guiguen, Y., Postlethwait, J., Chung, B. Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol. Biol. Evol. 18 (4), 542-550 (2001).
  12. Kishida, M., Callard, G. V. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology. 142 (2), 740-750 (2001).
  13. Rodríguez-Marí, A., et al. Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr.Patterns. 5 (5), 655-667 (2005).
  14. Krovel, A. V., Olsen, L. C. Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev. 116 (1-2), 141-150 (2002).
  15. Krovel, A. V., Olsen, L. C. Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev. Biol. 271 (1), 190-197 (2004).
  16. Tzung, K. W., et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports. 4 (1), 61-73 (2015).
  17. Hsiao, C., Tsai, H. Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev. Biol. 262 (2), 313-323 (2003).
  18. Jorgensen, A., Nielsen, J. E., Morthorst, J. E., Bjerregaard, P., Leffers, H. Laser capture microdissection of gonads from juvenile zebrafish. Reprod Biol Endocrinol. 7, 97 (2009).
  19. Chen, S., Zhang, H., Wang, F., Zhang, W., Peng, G. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation. Mol. Cell. Endocrinol. 433, 105-116 (2016).
  20. Westerfield, M. . The Zebrafish Book: A Guide for The Laboratory Use of Zebrafish (Danio rerio). , (2000).
  21. Liew, W. C., et al. Polygenic sex determination system in zebrafish. PLoS One. 7 (4), e34397 (2012).
  22. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N., Engeszer, R. E. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 238 (12), 2975-3015 (2009).
  23. Gupta, T., Mullins, M. C. Dissection of Organs from the Adult Zebrafish. J. Vis Exp. (37), (2010).
  24. Arnaout, R., Reischauer, S., Stainier, D. Y. R. Recovery of Adult Zebrafish Hearts for High-throughput Applications. J. Vis Exp. (94), (2014).
  25. Gerlach, G. F., Schrader, L. N., Wingert, R. A. Dissection of the Adult Zebrafish Kidney. J. Vis Exp. (54), (2011).
  26. Yoon, C., Kawakami, K., Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development. 124 (16), 3157-3165 (1997).
  27. Braat, A. K., Speksnijder, J. E., Zivkovic, D. Germ line development in fishes. Int. J. Dev. Biol. 43 (7), 745-760 (1999).
  28. Huang, H. Y., Ketting, R. F. Isolation of zebrafish gonads for RNA isolation. Methods Mol Biol. 1093, 183-194 (2014).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

122

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。