A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol for isolating gonadal tissue of larval zebrafish, which will facilitate investigations of zebrafish sex differentiation and maintenance.
Although wild zebrafish possess a ZZ/ZW sex-determination system, domesticated zebrafish have lost the sex chromosome. They utilize a polygenic sex determination system, where several genes distributed throughout the genome collectively determine the sex identities of individual fish. Currently, the genes involved in regulating gonad development and how they work remain elusive. Normally, isolating gonadal tissue is the first step to examine the sex developmental processes. Here, we present a procedure to isolate gonadal tissue from 17 dpf (days post fertilization) and 25 dpf zebrafish larvae. The isolated gonadal tissue may be subsequently examined by morphology and gene expression profiling.
The major female sex determinant in wild zebrafish chromosome 4 is lost or modified in the domesticated zebrafish (i.e. common lab strains)1. Instead, they have a polygenic sex determination system accompanied by environmental factors such as temperature, hypoxia, food availability and population density. The detailed mechanisms of zebrafish sex development are not fully understood. Fundamental questions such as when zebrafish sex determination occurs, what the primary sex determination signal(s) is/are, and which genes regulate the first step of gonad transformation remain to be answered2,3.
In the process of zebrafish sex development, several important stages have been recognized. In the early stage of development, starting from 4 hpf (hours post fertilization) primordial germ-cells (PGCs) undergo specification, migration to genital ridge and proliferation. PGC numbers and reciprocal interactions between germ cells and somatic cells are important for gonad differentiation4. At 13 dpf (days post fertilization), the gonads are in the undifferentiated stage. By 17 dpf, the gonads develop into bi-potential ovaries in both future females and males. The apoptosis-dependent transition from ovary to testis begin at 21 to 25 dpf and may continue for several weeks. By 35 dpf, the sex of the gonad has been determined and sex-specific gamete production is underway in both ovaries and testes5,6,7.
To date, diverse candidate genes and mechanisms of sex determination have been proposed. Proteomics and transcriptomic analysis have isolated many genes with sexually dimorphic expression and these genes have been utilized to study sex differentiation in zebrafish8,9,10. For example, in larval zebrafish, the cyp19a1a gene is specifically expressed in the ovary but not in the testis11,12. In addition, amh gene is weakly expressed in the ovarian follicle granulosa cells, but strongly in testis Sertoli cells13. In contrast, vasa gene is continuously expressed in the germ cells of both female and male zebrafish, making it a suitable gonad marker14,15.
Investigating gonadal gene expression levels is critical to understand the molecular mechanism of sex determination and differentiation especially in the bi-potential ovary stage3,9. However, the small size of larval zebrafish and correspondingly small gonads complicate the isolation of gonadal tissue for further molecular analysis. Previous studies used dissected whole trunk region between the opercula and anal pore16. This preparation, although containing gonads, consists of multiple tissues and organs. Alternatively, transgenic animals with gonad-specific GFP expression such as vasa: EGFP were used for gonadal tissue isolation via fluorescence activated cell sorting (FACS) and laser capture micro-dissection17,18. But their widespread application is limited. Here, we describe a simple procedure to isolate gonadal tissue from larval zebrafish at 17 dpf and 25 dpf. We demonstrate the position of the gonads with respect to other organs and isolate the morphologically intact gonads from the surrounding tissues. We further show the gonad-specific genes such as vasa and cyp19a1a are highly expressed in the isolated gonads compared with the trunk tissue through quantitative PCR (qPCR) analysis. The present protocol allows identification, isolation, RNA purification and amplification of gonadal specific genes from larval zebrafish, thereby enabling subsequent molecular analysis of gonadal tissue19.
Zebrafish experiments were approved by the Fudan University Institutional Animal Care and Use Committee. Zebrafish were raised and bred according to standard procedures20.
1. Preparations
2. Protocol 1: Dissect the Gonadal Tissue of 17 and 25 dpf Larvae
3. Protocol 2: Analyze Gene Expression of the Isolated Gonadal Tissues
Dissections of the gonads were performed on AB strain larval zebrafish. Figure 1 shows typical gonadal tissue of larval zebrafish at 17 dpf and 25 dpf. Firstly, the skin and muscles of one side of the abdomen is cut to expose the internal organs. After removing the mass of internal organs, the swim bladder together with the gonad remain in the trunk. The gonad was attached to the ventral side of swim bladder (arrow in Figure 1B
The zebrafish has become a powerful model and is extensively used in development and disease-related research. The methods for isolation of organs in adult zebrafish such as brain, heart, gonad, and kidney, have been well documented23,24,25. Due to the small size and dynamic remodeling of the gonadal tissues in the larval zebrafish, isolation of gonadal tissue is a challenging task. Previous studies used whole dissected trunk ti...
The authors declare that they have no competing financial interests.
We thank C Zhang for fish care. This work was supported by the National Natural Science Foundation of China (31171074, 31371099 and 31571067 to GP) and by the Pujiang Talent Project (09PJ1401900 to GP).
Name | Company | Catalog Number | Comments |
Cell culture dish 100 mm | Corning | 430167 | For embryo incubation |
20x EM | For a 1 L needed: add 17.5 g NaCl, 0.75 g KCl and 2.9 g CaCl·2H2O; then add 0.41 g KH2PO4, 0.412 g Na2HPO4 anhydrous and 4.9 g MgSO4·7H2O. | ||
1x EM | Dilute 20x EM in distilled water | ||
AGAROSE G-10 | Gene | 121985 | For preparing the 2% agar plates |
Trizol Reagent | Invitrogen | 15596-026 | For RNA isolation |
Meter glass | Shen Bo | 250 ml | For preparing the 2% agar plates |
Microwave Oven | Midea | M1-211A | For heating the AGAR |
Tweezer DUMONT#5INOX | World Precision Instrument | 500341 | For dissection |
Stereomicroscope | Motic | SMZ168 | For dissection |
Pure water equipment | Millipore | ||
Ringer’s solution | For a 1 L needed: Add 6.78 g NaCl, 0.22 g KCl, 0.26 g CaCl2 and 1.19 g Hepes; then fill to 1 L; Adjust pH to 7.2. Sterilize by filtration and keep in an autoclaved clear polycarbonate container. | ||
Transfer pipette | Samco | 202, 204 | |
Metal bath | QiLinbeier | Model GL-150 | |
Microscope | Leica | M205 FA | For photomicrograph |
Centrifuge | Eppendorf | 5417R | |
Micro Scale RNA Isolation Kit | Ambion | AM1931 | For RNA isolation from gonad tissues |
Dnase I | Sigma | AMPD1-1KT | For DNA digestion in the RNA solution |
RevertAid First Strand cDNA Synthesis Kit | Thermo Scientific | #K1631 | For first-strand cDNA synthesis |
Rnase H | Thermo Scientific | #EN0202 | For digesting the residual RNA in the cDNA solution. |
SYBR Green Realtime PCR Master Mix | TOYOBO | QPK-201 | This product is a Taq DNA polymerase-based 2x master mix for real-time PCR and applicable for intercalation assay with SYBR Green I. |
Spectrophotometer | Ne Drop | OD-2000+ | Measuring the concentration of the total RNA |
Mastercycler | Eppendorf | AG 22331 Hamburg | gene expression profiling |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved