登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

CRISPR-Cas9技术提供了一种有效的方法,可以精确编辑任何细胞类型的哺乳动物基因组,并代表一种执行全基因组基因筛选的新方法。此处提供了一个详细的协议,讨论成功执行池全基因组 CRISPR-Cas9 屏幕所需的步骤。

摘要

使用CRISPR-Cas系统的基因组编辑已经大大提升了精确编辑各种生物体的基因组的能力。在哺乳动物细胞的背景下,这项技术代表了一种用于功能基因组学研究的全基因组基因筛选的新手段。面向所有开放阅读框架的指南RNA(sgRNA)库允许在单个细胞池中方便地产生数千个基因扰动,这些细胞池可以筛选特定表型,以暗示基因功能和细胞过程。公正和系统的方式。CRISPR-Cas屏幕为研究人员提供了一种简单、高效和廉价的方法来揭示细胞表型的基因蓝图。此外,对不同细胞系和不同癌症类型的屏幕进行鉴别分析可以识别肿瘤细胞中上下文必要的基因,揭示特定抗癌治疗的潜在靶点。在人类细胞中执行全基因组屏幕可能令人望而生畏,因为这需要处理数千万个细胞,并且需要分析大量数据。这些屏幕的细节,如细胞系表征、CRISPR 库注意事项,以及分析过程中了解 CRISPR 技术的局限性和功能,经常被忽视。此处提供了一个详细的协议,用于成功执行基于全基因组 CRISPR-Cas9 的屏幕。

引言

CRISPR-Cas 是定期聚类短纤维重复和 CRISPR 相关核酸酶的简称,由单个核酸酶蛋白(例如 Cas9)与合成导引RNA(sgRNA)复合体组成。这种核糖核蛋白复合物以Cas9酶为目标,在特定的基因组位点1诱导双链DNA断裂。双绞线断裂可以通过同源定向修复 (HDR) 修复,或者更常见的是,通过非同源端连接 (NHEJ),一种容易出错的修复机制,导致插入和/或删除 (INDELS),经常破坏基因功能1.CRISPR的效率和简单性使以前无法实现的基因组靶向水平远远超过以前的基因组编辑技术,即锌指核酸酶(ZNF)或转录活化剂样效应核酸酶(TALENS),两者都受到更高的设计复杂性,较低的转染效率,并在多路基因编辑2的局限性。

CRISPR单导RNA基因组编辑的基础研究应用使科学家能够高效、廉价地询问单个基因的功能和遗传相互作用网络的拓扑结构。使用CRISPR-Cas系统大大提高了执行功能性全基因组屏幕的能力,特别是与早期的基因扰动技术(如RNA干扰(RNAi)和基因陷阱诱变相比。特别是,RNAi受到高脱靶效果和不完全击倒,导致与CRISPR3,4,5相比,灵敏度和特异性较低,而基因陷阱方法只有在单倍体中才可行细胞功能丧失,限制了细胞模型的范围,可以询问6。CRISPR能够产生完整的基因敲除,提供了一个更具生物学上强大的系统来询问突变表型,低噪声,最小的脱靶效应和在试剂5上的一致活性。CRISPR-Cas9 sgRNA库,针对整个人类基因组现已广泛可用,允许在一个单一的实验3,7,8,9同步产生数千个基因敲除.

我们开发了独特的CRISPR-Cas9全基因组sgRNA慢病毒库,称为多伦多敲除(TKO)库(可通过Addgene获得),这些库结构紧凑,经过序列优化,便于高分辨率功能基因组学屏幕。最新的库,TKOv3,以18,000个人类蛋白质编码基因为目标,71,090个指南,利用经验数据10优化了编辑效率。此外,TKOv3 可作为单组分库(LCV2::TKOv3、Addgene ID #90294)在单个载体上表达Cas9和sgRNA,从而减轻了生成稳定的Cas9表达细胞的需求,从而在广泛的范围内实现全基因组的敲除哺乳动物细胞类型。TKOv3也可用于没有Cas9(pLCKO2::TKOv3,Addgene ID= 125517)的载体中,可用于表达Cas911的细胞。

全基因组CRISPR-Cas9编辑的细胞群可以暴露在不同的生长条件下,随着时间的推移,通过下一代测序量化了sgRNA的丰度,为评估具有可追溯遗传的细胞的辍学或富集提供了读出扰动。CRISPR 敲除库可用于识别在扰动时导致细胞健康缺陷、中度药物敏感性(例如敏感或耐药基因)、调节蛋白质表达(例如,报告人)或特定基因所需的基因通路功能和细胞状态12,13,14。例如,癌细胞系中的差分健身屏可以识别肿瘤基因的消耗或减少,并富集或增加肿瘤抑制基因3,14,15。同样,使用中间剂量的治疗药物可以揭示耐药性和致敏基因16,17。

此处提供了详细的基因组规模CRISPR-Cas9功能丧失筛选方案,使用多伦多敲除库(TKOv1或v3)在哺乳动物细胞从库生成、筛选性能到数据分析。尽管此协议已针对使用多伦多挖空库进行筛选进行了优化,但可以应用它并扩展到所有 CRISPR sgRNA 集合库。

研究方案

下面概述的实验应遵循该研究所的环境健康和安全办公室指南。

1. 集合CRISPR sgRNA慢病毒库质粒扩增

  1. 将现成的CRISPR sgRNA质粒DNA库稀释至TE(例如TKOv3)中的50纳克/μL。
  2. 使用电能电池电化库。设置总共四个电穿孔反应,如下所述。
    1. 将 2 μL 的 50 纳克/μL TKO 库添加到 25 μL 的解冻电能电池中,以预冷却的比色皿 (1.0 mm) 在冰上。
    2. 使用制造商协议建议的最佳设置进行电波化。在脉冲的10秒内,向比色皿中加入975μL的恢复介质(或SOC介质)。
    3. 将电镀电池转移到培养管,并加入1 mL的恢复介质。在250rpm的转速下在摇动培养箱中孵育管1小时,在37°C下。
  3. 设置稀释板对库进行点子,并估计转换效率。
    1. 汇集所有8 mL的恢复细胞,并混合良好。将10μL的池细胞转移到990μL的恢复介质,进行800倍的稀释和混合。
    2. 将20μL的稀释板稀释到预加热的10厘米LB+卡比西林(100微克/升)琼脂板上。这会导致转换剂稀释 40,000 倍,用于计算转换效率。
    3. 每个板上回收的细胞板 400 μL,共 20 个预加热 15 厘米 LB – 卡比西林琼脂板。在 30°C 下孵育板 14-16 小时。
      注:在此较低温度下生长可最大程度地减少长端重复 (LTR)18之间的重组。
    4. 要计算转换效率,计算 40,000 倍稀释板上的菌落数(步骤 1.3.2)。将殖民地数乘以 40,000,以获得所有板块上的菌落总数。如果菌落总数代表相当于每sgRNA至少200倍菌落的库覆盖率(最优是500-1000x)。则继续。
      1. 例如,TKOv3库(71,090 sgRNA)的最小菌落数为1.4 x 107,相当于每sgRNA200x菌落。如果菌落表示不足,则根据稀释板上的菌落数量,在步骤 1.2 中增加电孔数量,以实现最小库覆盖率。
  4. 如下面所述收获殖民地
    1. 在每个15厘米的板中,加入7 mL的LB+ 卡比西林(100微克/升)培养基,然后用细胞扩张器刮掉菌落。使用 10 mL 移液器,将刮伤的细胞转移到无菌的 1 L 锥形烧瓶或瓶子中。
    2. 再次用 5 mL 的 LB + 卡比西林介质冲洗盘子,并将溶液转移到瓶子中。
    3. 对所有盘子重复一遍,将20个盘子的细胞放入无菌瓶中。
  5. 在室温 (RT) 下将收集的细胞与搅拌棒混合 1 小时,以分解细胞团块。将细胞转移到预称重的离心机瓶和以7,000 x g的离心机到颗粒细菌,然后丢弃介质。
  6. 称量湿细胞颗粒并减去离心机瓶的重量,以确定湿颗粒的最终重量。根据每列可以处理的细菌颗粒量,使用 maxi 或超大量程质粒纯化试剂盒纯化质粒 DNA。

2. 大规模CRISPR sgRNA库慢病毒生产

注: 协议本节中的所有步骤都在二类 A2 型生物安全机柜中的 BSL2+ 设施中执行。

  1. 根据通常从一个 15 厘米板中采集的 18 mL 病毒的估计值,计算病毒生产所需的 15 厘米板的数量。
  2. 通过在低抗生素生长培养基(DMEM = 10% FBS + 可选:0.1x 笔/链环)中,在 20 mL 培养基中每 15 厘米板的 8 x 106细胞将 HEK-293T 包装细胞播种,制备细胞进行转染。在37°C,5%CO2孵育细胞过夜。确保镀层细胞在转染时均匀分布70%~80%。
  3. 第二天,准备三个转染质粒混合物,如表1中概述的15厘米板。计算一次转染所需的质粒量,并混合为板数的质粒,以及一个要转染的质粒。
  4. 如表2所述,为每个转染准备脂基转染试剂。Aliquote将血清培养液降低到单个1.5 mL微离心管中,以便转染板的数量。加入转染试剂,轻轻混合,在RT孵育5分钟。
  5. 在5分钟孵育后,将一次转染所需的DNA量加入转染试剂中,使DNA复合物的转染试剂与μg比例为3:1。轻轻混合,在RT孵育30分钟。
    注:后续转染可以5组或更少的组进行制备,间隔为5分钟,以优化时间并避免过度孵化。
  6. 孵育30分钟后,小心地将每个转染混合物转移到每个包装细胞的板中。在圆形的锯齿形运动中,使用 1 mL 移液器尖端滴入,而不会干扰细胞单层,即可添加整个混合物。在37°C下孵育细胞18小时,在5%CO2下孵育。
  7. 制备病毒收获介质:500 mL 的 DMEM 介质 + 32 mL 的 BSA 库存(20 g/100 mL,溶解在 DMEM 中,过滤消毒 0.22 μm 过滤器) = 5 mL 的 100x 笔/链球菌。
  8. 18小时后,去除介质(在处置前适当处理慢病毒废物,如在1%次氯酸钠中孵育30分钟)。轻轻更换每个盘子的18 mL病毒收获介质。在37°C下孵育细胞18小时,在5%CO2下孵育。
  9. 24小时后,检查包装细胞的异常和熔融形态,以指示良好的病毒生产。然后,通过收集所有上清液并转移到无菌锥形离心管中来收获慢病毒。
  10. 将含有病毒的介质旋转 300 x g 5 分钟,然后粒状包装细胞。将上清液压入无菌聚丙烯管中,而不会干扰颗粒。
  11. 将病毒储存在4°C下,短时间(少于1周)或立即在-80°C储存,以便长期储存。将大规模病毒预置到一次性容量进行长期存储,以避免冻结/解冻。

3. 用于筛选的细胞系表征

  1. 选择所需的细胞线。
    1. 测量并记录细胞的大约翻倍时间。
    2. 确定最佳细胞电镀密度,使培养细胞在首选的组织培养容器(例如,15 厘米组织培养板)中每 3⁄4 个细胞加倍一次。
  2. 确定在所需细胞系中用于选择含有紫霉素抗标记的TKO库的紫霉素浓度,如下所示:
    1. 种子细胞在12孔板中,在72小时后达到汇合的密度,然后孵育过夜(37°C,5%CO2)。
    2. 第二天,以0.5微克/mL的增量,更改为含有稀释范围的普霉素浓度从0微克/mL到10微克/mL的介质。孵育细胞48小时。
    3. 48小时后,通过细胞计数或阿拉马尔蓝染色测量细胞的生存能力。
    4. 确定在48小时内杀死100%细胞的最低浓度。
      注:对于双倍倍长的细胞系,可以耐受用紫霉素的较长孵育。在这些情况下,确定 <3 细胞加倍所需的孵育时间的终止曲线。在筛查开始之前,尽量减少选择时间,避免基本基因的滴落。
  3. 通过执行与测量紫霉素敏感性相同的方法执行剂量响应曲线(步骤 3.2),检查细胞对六溴二苯丙胺的敏感性(高达 8 μg/mL)。如果使用六甲甲酰胺溴化物的 <8 μg/mL 观察到毒性,请勿使用。

4. 用于确定 MOI 的池 CRISPR 慢病毒库的功能滴定

  1. 解冻一个新鲜的配量的汇集CRISPR sgRNA库慢病毒(例如,LCV2::TKOv3),并保持在冰上。
  2. 设计一系列病毒体积,以在 0⁄2 mL(即 0 mL、0.25 mL、0.5 mL、1 mL 和 2 mL)的范围内进行测试。
  3. 以72小时达到汇合所需的密度,在15厘米的板材中采集目标细胞和种子细胞。
  4. 对于要测试的每个病毒体积,准备重复的板。将细胞、病毒、六溴二苯丙胺(8微克/mL)和介质添加到20 mL的最终体积中。彻底混合板,将板水平在培养箱中,孵育24小时(37°C,CO2)。
  5. 24小时后,清除含有介质的病毒并处理(使用生物安全预防措施处理慢病毒废物)。可随意用温暖的PBS轻轻清洗盘子,以去除外来病毒。
  6. 对于每种病毒状况,使用确定在第 3 节中杀死细胞的浓度,将含有紫霉素的 20 mL 培养基替换为一个复制板。到另一个板,添加20 mL的新鲜介质,不含紫霉素。孵育48小时(37°C,5%CO2)。
  7. 48小时后,检查所有未感染的细胞(0 mL病毒状况)与紫霉素治疗已死亡。单独收获所有板,并通过反复的温和移液分散细胞。
  8. 通过将细胞计数与选择紫霉素与不含紫霉素的细胞计数进行比较,计算每个病毒体积的细胞数量并计算每个病毒体积的MOI(即+/- 紫霉素)。
  9. 图形结果,以确定病毒体积,导致30%-40%细胞生存与紫霉素的选择与没有紫霉素。在相同的组织培养条件下,在屏幕期间使用此病毒体积实现 0.3~0.4 的 MOI。

5. 初级屏幕感染、选择和细胞传递

  1. 选择要在整个屏幕中维护的 CRISPR sgRNA 库覆盖范围(建议至少 200 倍)。
    1. 根据库的覆盖范围,确定维持每sgRNA覆盖所需的细胞数量,以及MOI 0.3(表3)中感染所需的细胞数量。
    2. 确定设置感染所需的板数(表4)。
  2. 使用 CRISPR 库感染细胞
    1. 收获细胞,并将所需的细胞数播种到每个15厘米的板中。
    2. 在所有板中加入六溴二苯丙胺(8微克/升)。
    3. 将 MOI 0.3 所需的体积将病毒添加到筛查和控制 2 板中。对于控制 1,不要添加病毒,并将该卷替换为介质。
    4. 通过倾斜彻底混合板。将板放在培养箱中,确保它们水平。
      注:在电镀前,通过将病毒、介质和六溴二苯甲酰胺与悬浮细胞结合,可以进行批量感染。
    5. 在步骤 3.2.4 中确定的浓度下,取出介质,用含有紫霉素的新鲜介质更换,以在病毒感染后 24 小时控制 1 板。将没有紫霉素的新鲜介质添加到控制 2 板中。孵育细胞48小时(37°C,5%CO2)。
    6. 48小时后加入紫霉素,确保所有未感染的细胞均死亡(控制1)确认紫霉素活性,然后收获受感染的细胞。
  3. 收获受感染的细胞群和细胞传递
    1. 从所有筛选板中采集选择的紫霉素细胞放入一个无菌容器中。分别从每个控制板上收集细胞。通过温和的反复移液分散细胞。
    2. 分别计算来自集合筛选细胞的细胞,控制1,并控制2,并计算每1mL的细胞数。
    3. 计算 MOI 和折叠覆盖率,如下所示:
      figure-protocol-4995
      figure-protocol-5064
    4. 在选定的库覆盖中从池细胞中收集三个细胞颗粒的复制,用于基因组DNA提取。在500 x g下将细胞离心5分钟,用PBS清洗。在-80°C处标记管和冷冻干燥的细胞颗粒(这些是T0参考样品)。
    5. 将受感染的细胞池拆分为三个复制组(例如,复制 A、复制 B、复制 C),同时保持每个复制中的库覆盖率。种子细胞的播种密度与扩展它们时通常使用的相同。对每个复制板和复制之间的相同单元格总数使用相同的单元格数。
    6. 继续通过细胞,并收获三个复制细胞颗粒从每个复制的池感染细胞,如上,每3~8天,根据细胞系,长达15-20细胞翻倍。在每个通道中,从每个复制组的所有板块中收集细胞彼此(即,复制A板中的所有细胞被重新混合在一起,复制B板中的所有细胞被重新混合在一起,等等)。
    7. 用时间 (T) 标记每个颗粒并复制指定。这对应于收集颗粒后的天数(例如 T3_A、T3_B、T3+C 等)。
  4. 对于阴性选择药物屏幕,允许细胞在治疗前在T0后至少恢复一次。在T3或T6,使用步骤5.3.5中使用的相同种子密度,将每个复制组(A、B、C)的细胞分裂成药物治疗和控制人群。
    1. 单独汇集药物治疗组中每个复制的库覆盖所需的细胞数。在中间浓度(IC20-IC50)添加药物。播种细胞并孵育(37°C,5%CO2),直到下一段。
    2. 单独汇集车辆控制组中每个复制的库覆盖率所需的单元格数。使用与药物相同的体积添加车辆控制(<0.5% v/v)。播种细胞并孵育(37°C,5%CO2),直到下一段。
    3. 如步骤 5.3.5 所述,每 3 天继续通过细胞并收获基因组 DNA 的细胞颗粒,同时在每个通道刷新药物或车辆。
  5. 对于正选择或耐药性屏幕,根据库覆盖所需的单元数拆分每个复制组。在每个复制中加入IC90药物浓度。在IC90,大多数细胞将被杀死。允许耐药人群生长和收集细胞颗粒(1⁄2 x 107细胞),用于基因组DNA提取。

6. CRISPR样品制备和测序

  1. 基因组DNA纯化
    1. 在RT孵育冷冻细胞颗粒5~10分钟,进行解冻。
    2. 将 1.4 mL 的 PBS 添加到含有细胞颗粒的 50 mL 离心管中。涡旋20秒,以重新悬浮细胞和休息1分钟。如果需要,移液器 15x 与 P1000 以分解剩余的细胞团块。如果从 15 mL 或 1.5 mL 管中转移细胞,用 1 mL 的 PBS 重新悬浮细胞,然后将细胞转移到 50 mL 管中,然后用 400 μL 的 PBS 冲洗原始管。
    3. 向重新悬浮的细胞中加入5 mL核赖斯溶液。使用 10 mL 移液器,通过上下移液 5 倍混合样品。
    4. 在核莱沙中加入32 μL的RNase A(20mg/mL;以获得100微克/mL的最终浓度),并通过反转管5倍混合样品。在 37°C 下孵育混合物 15 分钟,让样品在 RT 冷却 10 分钟。
    5. 在20s的解液和涡流中加入1.67 mL的蛋白质沉淀溶液。混合后可可见小蛋白团块。
    6. 在 RT 下以 4,500 x g离心 10 分钟。
    7. 使用10 mL移液器,将上清液转移到含有5 mL异丙醇的50 mL离心管中。通过反转轻轻混合溶液10倍,直到观察到DNA。
      注:DNA可以观察到为白色,线状的股,形成可见质量。
    8. 在RT处以4,500 x g离心5分钟,以颗粒DNA。
    9. 使用 10 mL 移液器,小心地去除上清液,避免去除 DNA 颗粒。在RT处加入5 mL的70%乙醇到DNA中。轻轻旋转管,以清洗脱氧核糖核酸颗粒和离心管的侧面。
    10. 在 RT 下以 4,500 x g离心 5 分钟。
    11. 使用 10 mL 移液器,小心去除 70% 乙醇,避免去除 DNA 颗粒。空气干燥基因组DNA在RT10分钟。
    12. 将400μL的TE溶液加入管中,通过在65°C孵育1小时,让DNA溶解。如果DNA未完全溶解,在65°C孵育管,再育育1小时,同时每15分钟轻轻轻拂管,将其保持在4°C过夜。
    13. 在RT下以4,500 x g离心1分钟,并将基因组DNA转移到1.5 mL低结合管。
    14. 在分光光度计(总核酸含量)和荧光计(对于双链DNA含量)上量化和测量基因组DNA的纯度。
  2. 或者,如果sgRNA的下游PCR扩增出现问题,则沉淀基因组DNA如下。
    1. 将400μL基因组DNA转移到1.5 mL微离心管中。
    2. 加入18 μL的5M NaCl(最终浓度为0.2 M)和900μL的95%乙醇。
    3. 反转管10倍,直到彻底混合,然后在16,000 x g下在RT上离心10分钟。
    4. 小心地去除上清液,避免去除DNA颗粒。用 500 μL 的 70% 乙醇清洗 DNA 颗粒。轻轻旋转管子以清洗DNA颗粒。
    5. 在 RT 下以 16,000 x g进行 5 分钟的离心机。
    6. 小心去除上清液,避免去除DNA颗粒。空气干燥基因组DNA在RT10分钟。
    7. 如步骤 6.1.12 所述,添加 300 μL TE 以溶解 DNA。
    8. 量化和测量基因组DNA的纯度,如步骤6.1.14所述。
  3. CRISPR 测序库准备
    1. 使用总共 100 μg 的基因组 DNA 设置表 5中概述的 PCR 1。每50μL反应加入3.5μg基因组DNA,并设置相同的50μL反应,以达到所需的覆盖。表 6列出了用于扩增 LCV2::TKOv3 测序库的引物序列示例。表 7列出了用于扩增 pLCKO2::TKOv3 测序库的引物序列示例。
    2. 使用表8中概述的程序,在热循环器中放大PCR1反应。
    3. 通过在1%的甘蔗凝胶上运行2μLPCR产物,检查PCR1的扩增。PCR 1 产生 600 bp 的积。
    4. 将每个基因组DNA样本的所有单个50μL反应汇集,并通过涡旋混合。
    5. 使用5 μL的集中PCR 1产物作为模板,为每个样品设置一个PCR 2反应(50μL),如表9中概述的。为每个单独的样本使用唯一的索引引出组合,以允许组合排序库样本。
    6. 使用表10中概述的程序,在热循环器中放大PCR2反应。
    7. 在铸造凝胶前10分钟,用0.1 N HCl清洁用于纯化放大产品的胶凝胶设备。准备含有DNA染色的2%甘蔗凝胶,用于纯化PCR 2扩增产物。
    8. 在低电压(1.0~1.5 小时运行)下,在 2% 的甘蔗凝胶上运行 PCR 2 产品。PCR 2 产生 200 bp 的产品。
    9. 在蓝光透射器上可视化 PCR 产品。使用凝胶萃取试剂盒去除 200 bp 带,并从甘蔗糖凝胶切片中纯化 DNA。在分光光度计和荧光计上量化和测量测序库的纯度。
      注:典型的凝胶纯化测序库浓度范围为5~10纳克/μL,总收率为150~300纳克。
  4. 高通量排序
    1. 在下一代测序器上对CRISPR排序库进行排序。
    2. 序列参考T0样本在400至500倍库覆盖率较高的读取深度下。以最小读取深度 200 倍的最小读取深度对落水屏幕进行序列实验时点采样。对于强正选择屏幕,最小读取深度为 50 倍,足以识别丰富的 sgRNA。
      注: 对 T0 样本进行排序以确定特定屏幕的库表示形式,并用作确定 sgRNA 折叠随时间变化的参考,这一点至关重要。

7. 数据分析

  1. 使用 Bowtie 等程序对齐序列,以便使用以下参数将序列读取映射到参考库:-v2(允许两个不匹配)和 -m1(丢弃映射到库中多个序列的任何读取)。
  2. 将给定样本的每个 sgRNA 的唯一映射读取数规范化为每个样本的 1000 万次读取,如下所示:
    figure-protocol-9025107
  3. 与 T0 样本 (Tn/T0) 相比,计算每个时间点 (Tn) 的每个复制的对数2 折变化。将 0.5 读取的伪计数添加到所有读取计数,以防止不连续性从零。将 T0 样本中具有 <30 原始读取的 sgRNA 排除在折叠变化计算和下游分析之外。
  4. 使用贝叶斯基因本质分析 (BAGEL) 算法 分析折叠变化,使用先前为基因本质性屏幕定义的核心基本和非必要训练集(补充表S1)或药物Z 用于药物屏幕20
  5. 使用 BF 分数计算屏幕性能评估的精度和召回率。使用步骤 7.4 中的基本集作为 Python 的 Scikit 学习库的精度_recall_曲线函数的真正正列表,以及上述 BF 分数子集。或者,在 R 中使用 PRROC 包执行相同的组件。
  6. 计算每个基因的所有参考线的平均折叠变化。在R或等效软件中为基本和非必需基因(参见步骤7.4)生成密度图。在 R 中,如果 x.ess 是包含基本基因的对数折叠更改值的矢量,并且 x.nonEs 包含非必需基因,则使用以下命令进行绘制:
    绘图(密度(x.ess),xlab="平均logFC",col="红色",lwd=2)
    线(密度(x.nonEs),col="蓝色",lwd=2)
    注:有关 Python 版本详细信息和使用的程序包,请参阅学学 v0.19.1:(由 Pedregosa 等人发布 21)。

结果

基因组规模CRISPR筛选工作流程概述

图 1概述了池 CRISPR 筛选工作流程,从低 MOI 下目标细胞感染 CRISPR 库慢病毒开始,以确保单个集成事件和足够的库表示(通常为 200 到 1000-折叠)。感染后,细胞用抗生素紫霉素进行治疗,以选择转导细胞。选择后,收集基线T0细胞颗粒,以评估筛选开始时的...

讨论

CRISPR技术以其使用简单、可靠性高,被广泛采用为精确基因组编辑的首选工具。集合CRISPR筛查提供了一种在单个实验中询问数千种基因扰动的方法。在池化屏幕中,sgRNA库充当分子条形码,因为每个序列都是唯一的,并映射到目标基因。通过将基因组DNA与细胞群分离,可以通过下一代测序量化sgRNA丰度来确定引起感兴趣的表型的基因。大量并行测序方法用于量化样本中的sgRNA,这意味着多个独立的?...

披露声明

作者声明没有相互竞争的经济利益。

致谢

这项工作得到了加拿大基因组、安大略省研究基金和加拿大卫生研究所(MOP-142375,PJT-148802)的支持。

材料

NameCompanyCatalog NumberComments
0.22 micron filter
30°C plate incubator
37°C shaking incubator
37°C, 5% CO2 incubator
5 M NaClPromegaV4221
50X TAE bufferBioShopTAE222.4
6 N Hydrochloric acid solutionBioShopHCL666.500
95% Ethanol
Alamar blueThermoFisher ScientificDAL1025
Blue-light transilluminatorThermoFisher ScientificG6600
Bovine Serum Albumin,Heat Shock Isolation, Fraction V. Min. 98%, Biotechnology gradeBioshopALB001.250
Dulbecco's Modification of Eagles MediumLife Technologies11995-065Cel culture media
Electroporation cuvettesBTX45-0134
ElectroporatorBTX45-0651
Endura electrocompetent cellsLucigen90293
Fetal Bovine SerumGIBCO12483-020
HEK293T packaging cellsATCCCRL-3216recommend passage number <15
Hexadimethrine Bromide (Polybrene)SigmaH9268Cationic polymer to enhance transduction efficiency
Hexadimethrine Bromide (Polybrene)
LB agar plates with carbenicillin
LB medium with carbenicillin
Low molecular weight DNA ladderNew England BiolabsN3233S
Nanodrop spectrophotometerThermoFisher ScientificND-ONE-W
NEBNext Ultra II Q5 Master MixNew England BiolabsM0544L
Opti-MEMLife Technologies31985-070Reduced serum media
Plasmid maxi purification kitQiagen12963
pMD2.G (envelope plasmid)AddgenePlasmid #12259lentiviral system
psPAX2 (packaging plasmid)AddgenePlasmid #12260lentiviral system
PuromycinWisent400-160-UG
QIAquick gel extraction kitQiagen28704
Qubit dsDNA BR assayThermoFisher ScientificQ32853
Qubit fluorometerThermoFisher ScientificQ33226
RNAse AInvitrogen12091021
S.O.C recovery mediumInvitrogen15544034
SYRB Safe DNA gel stainThermoFisher ScientificS33102
Toronto KnockOut CRIPSR library (TKOv3) - Cas9 includedAddgeneAddgene ID #90203Genome-wide CRISPR library , includes Cas9, 71,090 sgRNA
Toronto KnockOut CRIPSR library (TKOv3) - non-cas9AddgeneAddgene ID #125517Genome-wide CRISPR library, non-Cas9, 71,090 sgRNA
Tris-EDTA (TE) solution, pH8.0
UltraPure agaroseThermoFisher Scientific16500500
Wizard genomic DNA purification kitPromegaA1120
X-tremeGENE 9 DNA transfection reagentRoche06 365 809 001Lipid based transfection reagent

参考文献

  1. Jiang, F., Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics. 46, 505-529 (2017).
  2. Baliou, S., et al. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology. 53 (2), 443-468 (2018).
  3. Hart, T., et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. 163 (6), 1515-1526 (2015).
  4. Morgens, D. W., Deans, R. M., Li, A., Bassik, M. C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 34 (6), 634-636 (2016).
  5. Evers, B., et al. CRISPR knock-out screening outperforms shRNA and CRISPRi in identifying essential genes. Nature Biotechnology. 34 (6), 631-633 (2016).
  6. Miles, L. A., Garippa, R. J., Poirier, J. T. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. The FEBS Journal. 283 (17), 3170-3180 (2016).
  7. Wang, T., Wei, J. J., Sabatini, D. M., Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343 (6166), 80-84 (2014).
  8. Wang, T., et al. Identification and characterization of essential genes in the human genome. Science. 350 (6264), 1096-1101 (2015).
  9. Sanson, K. R., et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 9 (1), 5416 (2018).
  10. Hart, T., et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knock-out Screens. G3: Genes|Genomes|Genetics. 7 (8), 2719-2727 (2017).
  11. Mair, B., Tomic, J., et al. Essential gene profiles for human pluripotent stem cells identify uncharacterized genes and substrate dependencies. Cell Reports. 27 (2), 599-615 (2019).
  12. Shalem, O., et al. Genome-scale CRISPR-Cas9 knock-out screening in human cells. Science. 343 (6166), 84-87 (2014).
  13. Sharma, S., Petsalaki, E. Application of CRISPR-Cas9 Based Genome-Wide Screening Approaches to Study Cellular Signalling Mechanisms. International Journal of Molecular Sciences. 19 (4), (2018).
  14. Steinhart, Z., et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nature Medicine. 23 (1), 60-68 (2017).
  15. Wang, T., et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 168 (5), 890-903 (2017).
  16. Zimmermann, M., et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 559 (7713), 285-289 (2018).
  17. Deans, R. M., et al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology. 12 (5), 361-366 (2016).
  18. Trinh, T. J. J., Bloom, F., Hirsch, V. STBL2: an Escherichia coli strain for the stable propagation of retroviral clones and direct repeat sequences. Focus. 16, 78-80 (1994).
  19. Hart, T., Moffat, J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics. 17, 164 (2016).
  20. Wang, G. Z. M., et al. Identifying drug-gene interactions from CRISPR knock-out screens with drugZ. bioRxiv. , (2017).
  21. Pedregosa, F. V., G, , et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 12, 2825-2830 (2011).
  22. Ketela, T., et al. A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genomics. 12, 213 (2011).
  23. Doench, J. G. Am I ready for CRISPR? A user's guide to genetic screens. Nature Review Genetics. 19 (2), 67-80 (2018).
  24. Hartenian, E., Doench, J. G. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS Journal. 282 (8), 1383-1393 (2015).
  25. Li, W., et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knock-out screens. Genome Biology. 15 (12), 554 (2014).
  26. Sheel, A., Xue, W. Genomic Amplifications Cause False Positives in CRISPR Screens. Cancer Discovery. 6 (8), 824-826 (2016).
  27. Meyers, R. M., et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics. 49 (12), 1779-1784 (2017).
  28. Henser-Brownhill, T., Monserrat, J., Scaffidi, P. Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays. Epigenetics. 12 (12), 1065-1075 (2017).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

151 CRISPR Cas9 sgRNA CRISPR

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。